×

A characterization of the weighted weak type Coifman-Fefferman and Fefferman-Stein inequalities. (English) Zbl 1447.42017

Summary: We introduce a variant of the \(C_p\) condition (denoted by \(SC_p)\), and show that it characterizes weighted weak type versions of the classical Coifman-Fefferman and Fefferman-Stein inequalities.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

References:

[1] Buckley, S.: Harmonic analysis on weighted spaces. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.), The University of Chicago (1990)
[2] Canto, J.: Quantitative \(C_p\) estimates for Calderón-Zygmund operators, preprint. arXiv:1811.05209
[3] Canto, J., Li, K., Roncal, L., Tapiola, O.: \(C_p\) estimates for rough homogeneous singular integrals and sparse forms, preprint. arXiv:1909.08344
[4] Cejas, M., Li, K., Pérez, C., Rivera-Ríos, I.P.: Vector-valued operators, optimal weighted estimates and the \(C_p\) condition, preprint. arXiv:1712.05781 · Zbl 1450.42011
[5] Coifman, RR, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. USA, 69, 2838-2839 (1972) · Zbl 0243.44006 · doi:10.1073/pnas.69.10.2838
[6] Coifman, RR; Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, 241-250 (1974) · Zbl 0291.44007 · doi:10.4064/sm-51-3-241-250
[7] Coifman, RR; Rochberg, R., Another characterization of BMO, Proc. Am. Math. Soc., 79, 2, 249-254 (1980) · Zbl 0432.42016 · doi:10.1090/S0002-9939-1980-0565349-8
[8] Conde-Alonso, JM; Rey, G., A pointwise estimate for positive dyadic shifts and some applications, Math. Ann., 365, 3-4, 1111-1135 (2016) · Zbl 1353.42011 · doi:10.1007/s00208-015-1320-y
[9] Domingo-Salazar, C.; Lacey, M.; Rey, G., Borderline weak-type estimates for singular integrals and square functions, Bull. Lond. Math. Soc., 48, 1, 63-73 (2016) · Zbl 1343.42012 · doi:10.1112/blms/bdv090
[10] Fefferman, C.; Stein, EM, \(H^p\) spaces of several variables, Acta Math., 129, 3-4, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[11] Grafakos, L .: Classical Fourier analysis. In: Graduate Texts in Mathematics, 3rd edn., vol. 249. Springer, New York (2014) · Zbl 1304.42001
[12] Grafakos, L.: Modern Fourier analysis. In: Graduate Texts in Mathematics, 3rd edn., vol. 250. Springer, New York (2014) · Zbl 1304.42002
[13] Jawerth, B.; Torchinsky, A., Local sharp maximal functions, J. Approx. Theory, 43, 231-270 (1985) · Zbl 0565.42009 · doi:10.1016/0021-9045(85)90102-9
[14] Hytönen, T.P.: The \(A_2\) theorem: remarks and complements, Harmonic analysis and partial differential equations, vol. 612, pp. 91-106, Contemp. Math., Amer. Math. Soc., Providence, RI (2014) · Zbl 1354.42022
[15] Hytönen, T.; Roncal, L.; Tapiola, O., Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math., 218, 1, 133-164 (2017) · Zbl 1368.42015 · doi:10.1007/s11856-017-1462-6
[16] Kahanpää, L., Mejlbro, L.: Some new results on the Muckenhoupt conjecture concerning weighted norm inequalities connecting the Hilbert transform with the maximal function. In: Proceedings of the second Finnish-Polish summer school in complex analysis (Jyväskylä, 1983), vol. 28, pp. 53-72. BerichtUniv. Jyväskylä, Jyväskylä (1984) · Zbl 0534.47001
[17] Kislyakov, S., Kruglyak, N.: Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals. Mathematical Monographs (New Series), vol. 74. Birkhäuser/Springer Basel AG, Basel (2013) · Zbl 1270.46003
[18] Lacey, MT, An elementary proof of the \(A_2\) bound, Israel J. Math., 217, 1, 181-195 (2017) · Zbl 1368.42016 · doi:10.1007/s11856-017-1442-x
[19] Lerner, AK, On the John-Strömberg characterization of \(BMO\) for nondoubling measures, Real. Anal. Exchange, 28, 2, 649-660 (2003) · Zbl 1044.42018 · doi:10.14321/realanalexch.28.2.0649
[20] Lerner, AK, Some remarks on the Fefferman-Stein inequality, J. Anal. Math., 112, 329-349 (2010) · Zbl 1214.42031 · doi:10.1007/s11854-010-0032-1
[21] Lerner, AK, A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. Lond. Math. Soc., 42, 5, 843-856 (2010) · Zbl 1203.42023 · doi:10.1112/blms/bdq042
[22] Lerner, AK, On pointwise estimates involving sparse operators, New York J. Math., 22, 341-349 (2016) · Zbl 1347.42030
[23] Lerner, AK; Nazarov, F., Intuitive dyadic calculus: The basics, Expo. Math., 37, 3, 225-265 (2019) · Zbl 1440.42062 · doi:10.1016/j.exmath.2018.01.001
[24] Lerner, AK; Ombrosi, S., A boundedness criterion for general maximal operator, Publ. Mat., 54, 1, 53-71 (2010) · Zbl 1183.42024 · doi:10.5565/PUBLMAT_54110_03
[25] Lerner, A.K., Ombrosi, S.: Some remarks on the pointwise sparse domination. J. Geom. Anal. arXiv:1901.00195 (to appear) · Zbl 1434.42020
[26] Muckenhoupt, B. Norm inequalities relating the Hilbert transform to the Hardy-Littlewood maximal function, Functional analysis and approximation (Oberwolfach, 1980), vol. 60, pp. 219-231. Internat. Ser. Numer. Math.,Birkhäuser, Basel-Boston, Mass. (1981) · Zbl 0465.42014
[27] Sawyer, ET, Norm inequalities relating singular integrals and the maximal function, Studia Math., 75, 253-263 (1983) · Zbl 0528.44002 · doi:10.4064/sm-75-3-253-263
[28] Stein, EM, Note on the class \(L\log L\), Studia Math., 32, 305-310 (1969) · Zbl 0182.47803 · doi:10.4064/sm-32-3-305-310
[29] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ (1993) · Zbl 0821.42001
[30] Wilson, JM, Weighted Littlewood-Paley Theory and Exponential-Square Integrability (2008), Berlin: Springer-Verlag, Berlin · Zbl 1138.42011
[31] Yabuta, K., Sharp maximal function and \(C_p\) condition, Arch. Math., 55, 2, 151-155 (1990) · Zbl 0663.42021 · doi:10.1007/BF01189135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.