×

Identities in twisted Brauer monoids. (English) Zbl 07814308

Ambily, A. A. (ed.) et al., Semigroups, algebras and operator theory. ICSAOT 2022. Selected papers based on the presentations at the international conference, CUSAT, Kerala, India, March 28–31, 2022. Singapore: Springer. Springer Proc. Math. Stat. 436, 79-103 (2023).
The main result of this paper is that, for \(n\ge5\), the problem of checking the validity of a given semigroup identity in the twisted Brauer monoid \(\mathcal{B}_n^\tau\) is co-NP-complete. Its elements are pairs \((\pi;s)\) where \(\pi\) is a partition into two-element set of a set of \(2n\) elements and \(s\) is a natural number. The monoid \(\mathcal{B}_n^\tau\) has a natural geometric interpretation and plays a role in representation theory, both well explained in the paper. If one allows \(s\) to assume, more generally, any integer value, one obtains the larger monoid \(\mathcal{B}_n^{\pm\tau}\), which turns out to have a much nicer structure: it is regular, its \(\mathcal{J}\)-classes form an \((n+1)\)-chain and it is stable; up to isomorphism, its maximal subgroups are of a finite symmetric group with an infinite cyclic group. Yet, it satisfies the same identities as \(\mathcal{B}_n^\tau\). The next crucial ingredient in the proof of the main result is the following result which extends the finite case obtained by J. Almeida et al. [J. Math. Sci., New York 158, No. 5, 605–614 (2009; Zbl 1213.20052); translation from Zap. Nauchn. Semin. POMI 358, 5–22 (2008)]: in a stable semigroup \(\mathcal{S}\) with finitely many \(\mathcal{J}\)-classes, the identity checking problem for the direct product of its maximal subgroups reduces to that of \(\mathcal{S}\). The remaining tool used for the proof of the main theorem is a result of G. Horváth et al. [Bull. Lond. Math. Soc. 39, No. 3, 433–438 (2007; Zbl 1167.20019)] that states, for every non-solvable finite group, the identity checking problem is co-NP-complete.
For the entire collection see [Zbl 1531.20003].

MSC:

20M35 Semigroups in automata theory, linguistics, etc.
20M05 Free semigroups, generators and relations, word problems
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)

References:

[1] Almeida, J., Volkov, M.V., Goldberg, S.V.: Complexity of the identity checking problem for finite semigroups. Zap. Nauchn. Sem. POMI 358, 5-22 (2008). (Russian; Engl. translation J. Math. Sci. 158(5), 605-614 (2009)) · Zbl 1213.20052
[2] Auinger, K., Chen, Y., Hu, X., Luo, Y., Volkov, M.V.: The finite basis problem for Kauffman monoids. Algebr. Univers. 74(3-4), 333-350 (2015) · Zbl 1332.20056
[3] Auinger, K.; Dolinka, I.; Volkov, MV, Equational theories of semigroups with involution, J. Algebra, 369, 203-225 (2012) · Zbl 1294.20072 · doi:10.1016/j.jalgebra.2012.06.021
[4] Borisavljević, M.; Došen, K.; Petrić, Z., Kauffman monoids, J. Knot Theory Ramif., 11, 127-143 (2002) · Zbl 1025.57015 · doi:10.1142/S0218216502001524
[5] Brauer, R., On algebras which are connected with the semisimple continuous groups, Ann. Math., 38, 4, 857-872 (1937) · Zbl 0017.39105 · doi:10.2307/1968843
[6] Bulatov, A.A., Karpova, O., Shur, A.M., Startsev, K.: Lower bounds on words separation: Are there short identities in transformation semigroups? Electron. J. Comb. 24(3), article no. 3.35 (2017) · Zbl 1372.68156
[7] Cain, AJ; Johnson, M.; Kambites, M.; Malheiro, A., Representations and identities of plactic-like monoids, J. Algebra, 606, 819-850 (2022) · Zbl 1521.20125 · doi:10.1016/j.jalgebra.2022.04.033
[8] Cain, AJ; Malheiro, A.; Ribeiro, D., Identities and bases in the hypoplactic monoid, Commun. Algebra, 50, 1, 146-162 (2022) · Zbl 1494.20082 · doi:10.1080/00927872.2021.1955901
[9] Cain, A.J., Malheiro, A., Ribeiro, D.: Identities and bases in the sylvester and Baxter monoids. J. Algebr. Comb. (2023). doi:10.1007/s10801-022-01202-6 · Zbl 1540.20113
[10] Chen, Y., Hu, X., Kitov, N.V., Luo, Y., Volkov, M.V.: Identities of the Kauffman monoid \({\cal{K}}_3\). Commun. Algebra 48(5), 1956-1968 (2020) · Zbl 1453.20075
[11] Daviaud, L.; Johnson, M.; Kambites, M., Identities in upper triangular tropical matrix semigroups and the bicyclic monoid, J. Algebra, 501, 503-525 (2018) · Zbl 1403.20066 · doi:10.1016/j.jalgebra.2017.12.032
[12] Dolinka, I., East, J.: Twisted Brauer monoids. Proc. Royal Soc. Edinburgh, Ser. A 148A, 731-750 (2018) · Zbl 1489.20025
[13] East, J., Generators and relations for partition monoids and algebras, J. Algebra, 339, 1-26 (2011) · Zbl 1277.20069 · doi:10.1016/j.jalgebra.2011.04.008
[14] East, J., Presentations for Temperley-Lieb algebras, Q. J. Math., 72, 4, 1253-1269 (2021) · Zbl 1484.82009 · doi:10.1093/qmath/haab001
[15] East, J.; Higgins, PM, Green’s relations and stability for subsemigroups, Semigroup Forum, 101, 77-86 (2020) · Zbl 1508.20082 · doi:10.1007/s00233-019-10039-8
[16] FitzGerald, DG; Lau, KW, On the partition monoid and some related semigroups, Bull. Aust. Math. Soc., 83, 2, 273-288 (2011) · Zbl 1230.20061 · doi:10.1017/S0004972710001851
[17] Halverson, T.; Ram, A., Partition algebras, Eur. J. Comb., 26, 6, 869-921 (2005) · Zbl 1112.20010 · doi:10.1016/j.ejc.2004.06.005
[18] Han, B.B., Zhang, W.T.: Finite basis problems for stalactic, taiga, sylvester and Baxter monoids. J. Algebra Appl. 22(10), article no. 2350204 (2023) · Zbl 1529.05164
[19] Hanlon, Ph; Wales, D., On the decomposition of Brauer’s centralizer algebras, J. Algebra, 121, 2, 409-445 (1989) · Zbl 0695.20026 · doi:10.1016/0021-8693(89)90076-8
[20] Horváth, G., Lawrence, J., Mérai, L., Szabó, C.S.: The complexity of the equivalence problem for nonsolvable groups. Bull. Lond. Math. Soc. 39(3), 433-438 (2007) · Zbl 1167.20019
[21] Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995) · Zbl 0835.20077
[22] Jones, V.F.R.: The Potts model and the symmetric group. In: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), World Scientific, River Edge, NJ, pp. 259-267 (1994) · Zbl 0938.20505
[23] Jones, VFR, A quotient of the affine Hecke algebra in the Brauer algebra, Enseign. Math. II. Sér., 40, 313-344 (1994) · Zbl 0852.20035
[24] Karpova, O.; Shur, AM, Words separation and positive identities in symmetric groups, J. Automata, Lang. Combi., 26, 1-2, 67-89 (2021) · Zbl 1521.20005
[25] Kauffman, L., An invariant of regular isotopy, Trans. Am. Math. Soc., 318, 417-471 (1990) · Zbl 0763.57004 · doi:10.1090/S0002-9947-1990-0958895-7
[26] Kerov, S.V.: Realizations of representations of the Brauer semigroup. Zap. Nauchn. Sem. LOMI 164, 188-193 (1987). (Russian; Engl. translation J. Soviet Math. 47, 2503-2507 (1989)) · Zbl 0712.20031
[27] Kitov, N.V., Volkov, M.V.: Identities of the Kauffman monoid \({\cal{K}}_4\) and of the Jones monoid \({\cal{J}}_4\). In: Blass, A., Cégielski, P., Dershowitz, N., Droste, M., Finkbeiner B. (eds.) Fields of Logic and Computation III. Essays Dedicated to Yuri Gurevich on the Occasion of His 80th Birthday. Lecture Notes in Computer Science, vol. 12180, pp. 156-178. Springer, Cham (2020) · Zbl 1498.03010
[28] Kudryavtseva, G.; Mazorchuk, V., On presentations of Brauer-type monoids, Cent. Eur. J. Math., 4, 3, 413-434 (2006) · Zbl 1130.20041 · doi:10.2478/s11533-006-0017-6
[29] Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Berlin (1977) · Zbl 0368.20023
[30] Martin, P.: Potts Models and Related Problems in Statistical Mechanics. Series on Advances in Statistical Mechanics, vol. 5, World Scientific, Teaneck, NJ (1991) · Zbl 0734.17012
[31] Martin, P., Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction, J. Knot Theory Ramif., 3, 51-82 (1994) · Zbl 0804.16002 · doi:10.1142/S0218216594000071
[32] Martin, P., The structure of the partition algebras, J. Algebra, 183, 319-358 (1996) · Zbl 0863.20009 · doi:10.1006/jabr.1996.0223
[33] Martin, P., The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A, 33, 3669-3695 (2000) · Zbl 0951.82006 · doi:10.1088/0305-4470/33/19/304
[34] Mazorchuk, V., On the structure of Brauer semigroup and its partial analogue, Voprosy Algebry (Gomel), 13, 29-45 (1998)
[35] Moore, EH, Concerning the abstract groups of order \(k!\) and \(\frac{1}{2} k!\) holohedrically isomorphic with the symmetric and alternating substitution-groups on \(k\) letters, Proc. Lond. Math. Soc., 28, 357-366 (1897) · JFM 28.0121.03
[36] Murata, K., On the quotient semi-group of a non-commutative semi-group, Osaka Math. J., 2, 1-5 (1950) · Zbl 0036.29301
[37] Murskiǐ, V.L.: Several examples of varieties of semigroups. Mat. Zametki 3(6), 663-670 (1968). (Russian; Engl. translation (entitled Examples of varieties of semigroups) Math. Notes 3(6), 423-427 (1968)) · Zbl 0203.30002
[38] Nordahl, TE; Scheiblich, HE, Regular \(*\)-semigroups, Semigroup Forum, 16, 3, 369-377 (1978) · Zbl 0408.20043 · doi:10.1007/BF02194636
[39] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, MA (1994) · Zbl 0833.68049
[40] Rowen, LH, On rings with central polynomials, J. Algebra, 31, 3, 393-426 (1974) · Zbl 0286.16011 · doi:10.1016/0021-8693(74)90122-7
[41] Shneerson, L.; Volkov, MV, The identities of the free product of two trivial semigroups, Semigroup Forum, 95, 1, 245-250 (2017) · Zbl 1375.20060 · doi:10.1007/s00233-016-9815-8
[42] Volkov, MV, Remark on the identities of the grammic monoid with three generators, Semigroup Forum, 106, 1, 332-337 (2023) · Zbl 1516.20121 · doi:10.1007/s00233-022-10323-0
[43] Wenzl, H., On the structure of Brauer’s centralizer algebras, Ann. Math., 128, 1, 173-193 (1988) · Zbl 0656.20040 · doi:10.2307/1971466
[44] Wilcox, S., Cellularity of diagram algebras as twisted semigroup algebras, J. Algebra, 309, 1, 10-31 (2007) · Zbl 1154.16021 · doi:10.1016/j.jalgebra.2006.10.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.