×

Prethermalization in coupled one-dimensional quantum gases. (English) Zbl 07915014

Summary: We consider the problem of the development of steady states in one-dimensional Bose gas tubes that are weakly coupled to one another through a density-density interaction. We analyze this development through a Boltzmann collision integral approach. We argue that when the leading order of the collision integral, where single particle-hole excitations are created in individual gases, is dominant, the state of the gas evolves first to a non-thermal fixed point, i.e. a prethermalization plateau. This order is dominant when a pair of tubes are inequivalent with, say, different temperatures or different effective interaction parameters, \(\gamma\). When both tubes are in the strongly interacting regime we additionally characterize this non-thermal prethermalization plateau by constructing the quasi-conserved quantities that control the existence of this plateau as well as the associated generalized Gibbs ensemble.

MSC:

82Bxx Equilibrium statistical mechanics
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
81Qxx General mathematical topics and methods in quantum theory

References:

[1] A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Colloquium: Nonequilib-rium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011), doi:10.1103/RevModPhys.83.863. · doi:10.1103/RevModPhys.83.863
[2] C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of sta-tistical mechanics in closed quantum systems, Rep. Prog. Phys. 79, 056001 (2016), doi:10.1088/0034-4885/79/5/056001. · doi:10.1088/0034-4885/79/5/056001
[3] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016), doi:10.1080/00018732.2016.1198134. · doi:10.1080/00018732.2016.1198134
[4] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991), doi:10.1103/PhysRevA.43.2046. · doi:10.1103/PhysRevA.43.2046
[5] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994), doi:10.1103/PhysRevE.50.888. · doi:10.1103/PhysRevE.50.888
[6] M. Srednicki, Thermal fluctuations in quantized chaotic systems, J. Phys. A: Math. Gen. 29, L75 (1996), doi:10.1088/0305-4470/29/4/003. · Zbl 0921.58060 · doi:10.1088/0305-4470/29/4/003
[7] M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys. A: Math. Gen. 32, 1163 (1999), doi:10.1088/0305-4470/32/7/007. · Zbl 1055.81561 · doi:10.1088/0305-4470/32/7/007
[8] M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008), doi:10.1038/nature06838. · doi:10.1038/nature06838
[9] S. Moudgalya, B. A. Bernevig and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: A review of exact results, Rep. Prog. Phys. 85, 086501 (2022), doi:10.1088/1361-6633/ac73a0. · doi:10.1088/1361-6633/ac73a0
[10] M. Serbyn, D. A. Abanin and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021), doi:10.1038/s41567-021-01230-2. · doi:10.1038/s41567-021-01230-2
[11] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn and Z. Papić, Weak ergodicity breaking from quantum many-body scars, Nat. Phys. 14, 745 (2018), doi:10.1038/s41567-018-0137-5. · doi:10.1038/s41567-018-0137-5
[12] A. J. A. James, R. M. Konik and N. J. Robinson, Nonthermal states arising from confinement in one and two dimensions, Phys. Rev. Lett. 122, 130603 (2019), doi:10.1103/PhysRevLett.122.130603. · doi:10.1103/PhysRevLett.122.130603
[13] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely inte-grable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons, Phys. Rev. Lett. 98, 050405 (2007), doi:10.1103/PhysRevLett.98.050405. · doi:10.1103/PhysRevLett.98.050405
[14] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. 130, 1605 (1963), doi:10.1103/PhysRev.130.1605. · Zbl 0138.23001 · doi:10.1103/PhysRev.130.1605
[15] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. 130, 1616 (1963), doi:10.1103/PhysRev.130.1616. · Zbl 0138.23002 · doi:10.1103/PhysRev.130.1616
[16] H. Bethe, Zur Theorie der Metalle, Z. Phys. 71, 205 (1931), doi:10.1007/bf01341708. · JFM 57.1587.01 · doi:10.1007/bf01341708
[17] E. H. Lieb and F. Y. Wu, Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension, Phys. Rev. Lett. 20, 1445 (1968), doi:10.1103/PhysRevLett.20.1445. · doi:10.1103/PhysRevLett.20.1445
[18] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper and V. E. Korepin, The one-dimensional Hubbard model, Cambridge University Press, Cambridge, UK, ISBN 9780521802628 (2005), doi:10.1017/cbo9780511534843. · Zbl 1107.82014 · doi:10.1017/cbo9780511534843
[19] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrishnan and B. L. Lev, Thermalization near integrability in a dipolar quantum Newton’s cradle, Phys. Rev. X 8, 021030 (2018), doi:10.1103/PhysRevX.8.021030. · doi:10.1103/PhysRevX.8.021030
[20] W. Kao, K.-Y. Li, K.-Y. Lin, S. Gopalakrishnan and B. L. Lev, Topological pumping of a 1D dipolar gas into strongly correlated prethermal states, Science 371, 296 (2021), doi:10.1126/science.abb4928. · doi:10.1126/science.abb4928
[21] T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900 (2006), doi:10.1038/nature04693. · doi:10.1038/nature04693
[22] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl and K. Kiefer, Quantum criticality in an Ising chain: Experimental evidence for emergent E 8 symmetry, Science 327, 177 (2010), doi:10.1126/science.1180085. · doi:10.1126/science.1180085
[23] B. Lake, D. A. Tennant, C. D. Frost and S. E. Nagler, Quantum criticality and universal scaling of a quantum antiferromagnet, Nat. Mater. 4, 329 (2005), doi:10.1038/nmat1327. · doi:10.1038/nmat1327
[24] H. Fujisawa, T. Yokoya, T. Takahashi, S. Miyasaka, M. Kibune and H. Takagi, Angle-resolved photoemission study of Sr 2 CuO 3 , Phys. Rev. B 59, 7358 (1999), doi:10.1103/PhysRevB.59.7358. · doi:10.1103/PhysRevB.59.7358
[25] R. Neudert, M. Knupfer, M. S. Golden, J. Fink, W. Stephan, K. Penc, N. Mo-toyama, H. Eisaki and S. Uchida, Manifestation of spin-charge separation in the dy-namic dielectric response of one-dimensional Sr 2 CuO 3 , Phys. Rev. Lett. 81, 657 (1998), doi:10.1103/PhysRevLett.81.657. · doi:10.1103/PhysRevLett.81.657
[26] C. Kim, A. Y. Matsuura, Z.-X. Shen, N. Motoyama, H. Eisaki, S. Uchida, T. Tohyama and S. Maekawa, Observation of spin-charge separation in one-dimensional SrCuO 2 , Phys. Rev. Lett. 77, 4054 (1996), doi:10.1103/PhysRevLett.77.4054. · doi:10.1103/PhysRevLett.77.4054
[27] Z. Chen et al., Anomalously strong near-neighbor attraction in doped 1D cuprate chains, Science 373, 1235 (2021), doi:10.1126/science.abf5174. · doi:10.1126/science.abf5174
[28] M. Kollar, F. A. Wolf and M. Eckstein, Generalized Gibbs ensemble prediction of prethermal-ization plateaus and their relation to nonthermal steady states in integrable systems, Phys. Rev. B 84, 054304 (2011), doi:10.1103/PhysRevB.84.054304. · doi:10.1103/PhysRevB.84.054304
[29] J. Berges, S. Borsányi and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93, 142002 (2004), doi:10.1103/PhysRevLett.93.142002. · doi:10.1103/PhysRevLett.93.142002
[30] M. Panfil, S. Gopalakrishnan and R. M. Konik, Thermalization of interact-ing quasi-one-dimensional systems, Phys. Rev. Lett. 130, 030401 (2023), doi:10.1103/PhysRevLett.130.030401. · doi:10.1103/PhysRevLett.130.030401
[31] J. De Nardis, D. Bernard and B. Doyon, Diffusion in generalized hydrodynamics and quasi-particle scattering, SciPost Phys. 6, 049 (2019), doi:10.21468/scipostphys.6.4.049. · doi:10.21468/scipostphys.6.4.049
[32] J. De Nardis, B. Doyon, M. Medenjak and M. Panfil, Correlation functions and transport coefficients in generalised hydrodynamics, J. Stat. Mech.: Theory Exp. 014002 (2022), doi:10.1088/1742-5468/ac3658. · Zbl 1539.82168 · doi:10.1088/1742-5468/ac3658
[33] M. Takahashi, Thermodynamics of one-dimensional solvable models, Cam-bridge University Press, Cambridge, UK, ISBN 9780521551434 (1999), doi:10.1017/CBO9780511524332. · Zbl 0998.82503 · doi:10.1017/CBO9780511524332
[34] M. Gaudin, The Bethe wavefunction, Cambridge University Press, Cambridge, UK, ISBN 9781107045859 (2014), doi:10.1017/CBO9781107053885. · Zbl 1335.81010 · doi:10.1017/CBO9781107053885
[35] F. Franchini, An introduction to integrable techniques for one-dimensional quantum sys-tems, Springer, Cham, Switzerland, ISBN 9783319484860 (2017), doi:10.1007/978-3-319-48487-7. · Zbl 1376.82001 · doi:10.1007/978-3-319-48487-7
[36] C. N. Yang and C. P. Yang, Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction, J. Math. Phys. 10, 1115 (1969), doi:10.1063/1.1664947. · Zbl 0987.82503 · doi:10.1063/1.1664947
[37] B. Davies and V. E. Korepin, Higher conservation laws for the quantum non-linear Schroedinger equation, doi:10.1016/0378-4371(90)90126-D. · Zbl 0717.35085 · doi:10.1016/0378-4371(90)90126-D
[38] T. Palmai and R. M. Konik, Quasilocal charges and the generalized Gibbs ensemble in the Lieb-Liniger model, Phys. Rev. E 98, 052126 (2018), doi:10.1103/PhysRevE.98.052126. · doi:10.1103/PhysRevE.98.052126
[39] F. H. L. Essler, G. Mussardo and M. Panfil, Generalized Gibbs ensembles for quantum field theories, Phys. Rev. A 91, 051602 (2015), doi:10.1103/PhysRevA.91.051602. · doi:10.1103/PhysRevA.91.051602
[40] F. H. L. Essler, G. Mussardo and M. Panfil, On truncated generalized Gibbs ensembles in the Ising field theory, J. Stat. Mech.: Theory Exp. 013103 (2017), doi:10.1088/1742-5468/aa53f4. · Zbl 1457.82064 · doi:10.1088/1742-5468/aa53f4
[41] J. De Nardis, B. Wouters, M. Brockmann and J.-S. Caux, Solution for an in-teraction quench in the Lieb-Liniger Bose gas, Phys. Rev. A 89, 033601 (2014), doi:10.1103/PhysRevA.89.033601. · doi:10.1103/PhysRevA.89.033601
[42] V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, UK, ISBN 9780521373203 (1993), doi:10.1017/CBO9780511628832. · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[43] P. Ruggiero, P. Calabrese, B. Doyon and J. Dubail, Quantum generalized hydrodynamics, Phys. Rev. Lett. 124, 140603 (2020), doi:10.1103/PhysRevLett.124.140603. · doi:10.1103/PhysRevLett.124.140603
[44] J. Durnin, M. J. Bhaseen and B. Doyon, Nonequilibrium dynamics and weakly broken in-tegrability, Phys. Rev. Lett. 127, 130601 (2021), doi:10.1103/PhysRevLett.127.130601. · doi:10.1103/PhysRevLett.127.130601
[45] J. De Nardis and M. Panfil, Density form factors of the 1D Bose gas for finite entropy states, J. Stat. Mech.: Theory Exp. P02019 (2015), doi:10.1088/1742-5468/2015/02/P02019. · Zbl 1456.82422 · doi:10.1088/1742-5468/2015/02/P02019
[46] J. De Nardis and M. Panfil, Particle-hole pairs and density-density correlations in the Lieb-Liniger model, J. Stat. Mech.: Theory Exp. 033102 (2018), doi:10.1088/1742-5468/aab012. · Zbl 1459.81016 · doi:10.1088/1742-5468/aab012
[47] A. Cortés Cubero and M. Panfil, Thermodynamic bootstrap program for integrable QFT’s: Form factors and correlation functions at finite energy density, J. High Energy Phys. 01, 104 (2019), doi:10.1007/JHEP01(2019)104. · Zbl 1409.81115 · doi:10.1007/JHEP01(2019)104
[48] M. Panfil, The two particle-hole pairs contribution to the dynamic correlation func-tions of quantum integrable models, J. Stat. Mech.: Theory Exp. 013108 (2021), doi:10.1088/1742-5468/abd30c. · Zbl 1539.82199 · doi:10.1088/1742-5468/abd30c
[49] J. Mossel and J.-S. Caux, Generalized TBA and generalized Gibbs, J. Phys. A: Math. Theor. 45, 255001 (2012), doi:10.1088/1751-8113/45/25/255001. · Zbl 1243.82027 · doi:10.1088/1751-8113/45/25/255001
[50] J.-S. Caux and R. M. Konik, Constructing the generalized Gibbs ensemble after a quantum quench, Phys. Rev. Lett. 109, 175301 (2012), doi:10.1103/PhysRevLett.109.175301. · doi:10.1103/PhysRevLett.109.175301
[51] J. Pawłowski, M. Panfil, J. Herbrych and M. Mierzejewski, Long-living prether-malization in nearly integrable spin ladders, Phys. Rev. B 109, L161109 (2024), doi:10.1103/PhysRevB.109.L161109. · doi:10.1103/PhysRevB.109.L161109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.