×

Loop expansion around the Bethe approximation through the \(M\)-layer construction. (English) Zbl 1457.82421

Summary: For every physical model defined on a generic graph or factor graph, the Bethe \(M\)-layer construction allows building a different model for which the Bethe approximation is exact in the large \(M\) limit, and coincides with the original model for \(M=1\). The \(1/M\) perturbative series is then expressed by a diagrammatic loop expansion in terms of so-called fat diagrams. Our motivation is to study some important second-order phase transitions that do exist on the Bethe lattice, but are either qualitatively different or absent in the corresponding fully connected case. In this case, the standard approach based on a perturbative expansion around the naive mean field theory (essentially a fully connected model) fails. On physical grounds, we expect that when the construction is applied to a lattice in finite dimension there is a small region of the external parameters, close to the Bethe critical point, where strong deviations from mean-field behavior will be observed. In this region, the \(1/M\) expansion for the corrections diverges, and can be the starting point for determining the correct non-mean-field critical exponents using renormalization group arguments. In the end, we will show that the critical series for the generic observable can be expressed as a sum of Feynman diagrams with the same numerical prefactors of field theories. However, the contribution of a given diagram is not evaluated by associating Gaussian propagators to its lines, as in field theories: one has to consider the graph as a portion of the original lattice, replacing the internal lines with appropriate one-dimensional chains, and attaching to the internal points the appropriate number of infinite-size Bethe trees to restore the correct local connectivity of the original model. The actual contribution of each (fat) diagram is the so-called line-connected observable, which also includes contributions from sub-diagrams with appropriate prefactors. In order to compute the corrections near to the critical point, Feynman diagrams (with their symmetry factors) can be read directly from the appropriate field-theoretical literature; the computation of momentum integrals is also quite similar; the extra work consists of computing the line-connected observable of the associated fat diagram in the limit of all lines becoming infinitely long.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82B23 Exactly solvable models; Bethe ansatz

References:

[1] Yedidia J S, Freeman W T and Weiss Y 2003 Exploring Artificial Intelligence in the New Millennium vol 8 (San Francisco, CA: Morgan Kaufmann) p 236
[2] Montanari A and Rizzo T 2005 J. Stat. Mech. P10011 · doi:10.1088/1742-5468/2005/10/P10011
[3] Parisi G and Slanina F 2006 J. Stat. Mech. L02003 · doi:10.1088/1742-5468/2006/02/L02003?subject=
[4] Chertkov M and Chernyak V Y 2006 Phys. Rev. E 73 065102 · Zbl 1244.82058 · doi:10.1103/PhysRevE.73.065102
[5] Chertkov M and Chernyak V Y 2006 J. Stat. Mech. P06009 · Zbl 1244.82059 · doi:10.1088/1742-5468/2006/06/P06009?subject=
[6] Mooij J M, Wemmenhove B, Kappen H J and Rizzo T 2007 Proc. of the 11th Int. Conf. on Artificial Intelligence and Statisticsvol 11 pp 331-8
[7] Rizzo T, Wemmenhove B and Kappen H J 2007 Phys. Rev. E 76 011102 · doi:10.1103/PhysRevE.76.011102
[8] Raymond J and Ricci-Tersenghi F 2017 J. Mach. Learn. Res.18 1
[9] Wainwright M J and Jordan M I 2008 Found. Trends Mach. Learn.1 1 · Zbl 1193.62107 · doi:10.1561/2200000001
[10] Efetov K 1990 Phys. A: Stat. Mech. Appl.167 119 · doi:10.1016/0378-4371(90)90046-U
[11] Sacksteder V E 2007 Phys. Rev. D 76 105032 · doi:10.1103/PhysRevD.76.105032
[12] Vontobel P O 2013 IEEE Trans. Inf. Theory59 6018 · Zbl 1364.94632 · doi:10.1109/TIT.2013.2264715
[13] Mori R and Tanaka T 2012 Proc. IEICE SITA
[14] Mori R 2013 PhD Thesis University of Kyoto
[15] Parisi G 2012 PoS 023 arXiv:1201.5813
[16] Lucibello C, Morone F and Rizzo T 2014 Phys. Rev. E 90 012140 · doi:10.1103/PhysRevE.90.012140
[17] Parisi G 1988 Statistical Field Theory (Reading, MA: Addison-Wesley) · Zbl 0984.81515
[18] Le Bellac M 1991 Quantum and Statistical Field Theory (Oxford: Clarendon)
[19] Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena (Oxford: Oxford University Press) · doi:10.1093/acprof:oso/9780198509233.001.0001
[20] Itzykson C and Zuber J 1980 Quantum Field Theory (New York: McGraw-Hill)
[21] Cardy J 1996 Scaling and Renormalization in Statistical Physics (Cambridge: Cambridge University Press) · doi:10.1017/CBO9781316036440
[22] Brezin E, Zinn-Justin J and Le Guillou J C 1976 Phase Transitions and Critical Phenomena vol 6 (LOndon: Academic)
[23] Parisi G, Mézard M and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific) · Zbl 0992.82500
[24] Baños R A et al 2012 Proc. Natl Acad. Sci. USA109 6452 · doi:10.1073/pnas.1203295109
[25] Baity-Jesi M et al 2014 Phys. Rev. E 89 032140 · doi:10.1103/PhysRevE.89.032140
[26] Baity-Jesi M et al 2014 J. Stat. Mech. P05014 · Zbl 1456.82900 · doi:10.1088/1742-5468/2014/05/P05014
[27] Parisi G, Ricci-Tersenghi F and Rizzo T 2014 J. Stat. Mech. P04013 · Zbl 1456.82926 · doi:10.1088/1742-5468/2014/04/P04013
[28] Cammarota C, Biroli G, Tarzia M and Tarjus G 2013 Phys. Rev. B 87 064202 · doi:10.1103/PhysRevB.87.064202
[29] Abou-Chacra R, Thouless D and Anderson P 1973 J. Phys. C: Solid State Phys.6 1734 · doi:10.1088/0022-3719/6/10/009
[30] Abou-Chacra R and Thouless D 1974 J. Phys. C: Solid State Phys.7 65 · doi:10.1088/0022-3719/7/1/015
[31] Biroli G, Semerjian G and Tarzia M 2010 Prog. Theor. Phys. Suppl.184 187 · Zbl 1201.82007 · doi:10.1143/PTPS.184.187
[32] De Dominicis C and Giardina I 2006 Random Fields and Spin Glasses (Cambridge: Cambridge University Press) · Zbl 1138.82030 · doi:10.1017/CBO9780511534836
[33] Parisi G and Sourlas N 1979 Phys. Rev. Lett.43 744 · doi:10.1103/PhysRevLett.43.744
[34] Polyakov A M 1969 Sov. Phys.—JETP28 533
[35] Langer J 1967 Ann. Phys.41 · doi:10.1016/0003-4916(67)90200-X
[36] Montanari A and Mézard M 2009 Information, Physics and Computation (Oxford: Oxford University Press) · Zbl 1163.94001
[37] Boccagna R 2017 Eur. Phys. J. Spec. Top.226 2311 · doi:10.1140/epjst/e2017-70065-3
[38] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett.56 889 · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[39] Lucibello C, Morone F, Parisi G, Ricci-Tersenghi F and Rizzo T 2014 Phys. Rev. E 90 012146 · doi:10.1103/PhysRevE.90.012146
[40] Lucibello C 2015 arXiv:1502.02471
[41] Mézard M and Parisi G 1987 J. Phys.48 1451 · doi:10.1051/jphys:019870048090145100
[42] Parisi G and Ratiéville M 2002 Eur. Phys. J. B 29 457 · doi:10.1140/epjb/e2002-00326-3
[43] Fitzner R and van der Hofstad R 2013 J. Stat. Phys.150 264 · Zbl 1259.82043 · doi:10.1007/s10955-012-0684-6
[44] Stanley R P 2011 Enumerative Combinatorics vol 1 2nd edn (New York: Cambridge University Press) · doi:10.1017/CBO9781139058520
[45] Parisi G and Rizzo T 2010 J. Stat. Mech. 045001
[46] Bouchaud J P, Krzakala F and Martin O C 2003 Phys. Rev. B 68 224404 · doi:10.1103/PhysRevB.68.224404
[47] Cheng T P and Li L F 1984 Gauge Theory of Elementary Particle Physics (Oxford: Clarendon)
[48] Kaku M 1993 Quantum Field Theory, a Modern Introduction (Oxford: Oxford University Press)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.