×

Planar discrete birth-growth Poisson-Voronoi tessellations with the von Neumann neighbourhood. (English) Zbl 1457.82288

Summary: Poisson-Voronoi tessellations are widely used as the generic model for studying various birth-growth processes and resulting morphologies in physics, chemistry, materials science, and related fields. This paper studies planar discrete Poisson-Voronoi tessellations constructed directly by the growth to impingement of random square germs. They materially differ from similar tessellations constructed of the nearest tile loci according to the basic definition. The boundary structure is described in detail. Its peculiarities are used to extend the concept of Gabriel edges to the considered discrete case and also to quantify this concept. The averaged percentage of Gabriel edges appears to be practically independent of the germs density, \( \bar{G} = 70\)%. The studied densities range from 0.01 to 0.000 01. Statistical results are presented for the whole tessellation and also for subsets of random domains with the given number of edges \(\nu \). Two sets of results are compared: for edges of each random domain arranged from the longest to the shortest and for edges arranged from the nearest to the most distant. Averaged distances to neighbours in the metric determined by the growth mode of islands are compared with that in the Euclidean metric. Also, the cyclic sequences of edge lengths of random domains are examined. The linearity with respect to \(\nu\) is revealed for four scaling-related characteristics: the area of random domains, the perimeter length of random domains, the area of complete concentric belts, and the coordinates of maxima of kinetic curves.

MSC:

82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Johnson W A and Mehl R F 1939 Trans. Am. Inst. Min. Metall. Eng.135 416
[2] Kolmogorov A N 1937 Bull. Acad. Sci. URSS3 355 (in Russian)
[3] Kolmogorov A N 1992 Selected Works vol 2 ed A N Shiryayev (Dordrecht: Kluwer) p 188
[4] Avrami M 1939 J. Chem. Phys.7 1103 · doi:10.1063/1.1750380
[5] Mulheran P A and Blackman J A 1995 Phil. Mag.72 55 · doi:10.1080/09500839508241614
[6] Mulheran P A 2008 Handbook of Metal Physics vol 5 ed J A Blackman (Amsterdam: Elsevier) p 73
[7] Blackman J A and Mulheran P A 2001 Comput. Phys. Commun.137 195 · Zbl 1006.82514 · doi:10.1016/S0010-4655(01)00179-5
[8] Mulheran P A and Robbie D A 2000 Europhys. Lett.49 617 · doi:10.1209/epl/i2000-00195-4
[9] Evans J W, Thiel P A and Bartelt M C 2006 Surf. Sci. Rep.61 1 · doi:10.1016/j.surfrep.2005.08.004
[10] Evans J W and Bartelt M C 2002 Phys. Rev. B 66 235410 · doi:10.1103/PhysRevB.66.235410
[11] Li M, Bartelt M C and Evans J W 2003 Phys. Rev. B 68 121401 · doi:10.1103/PhysRevB.68.121401
[12] Li M and Evans J W 2003 Surf. Sci.546 127 · doi:10.1016/j.susc.2003.09.028
[13] Zhu H X, Thorpe S M and Windle A H 2001 Phil. Mag.81 2765 · doi:10.1080/01418610010032364
[14] Tomellini M and Fanfoni M 2012 Phys. Rev. B 85 021606 · doi:10.1103/PhysRevE.85.021606
[15] Fanfoni M, Persichetti L and Tomellini M 2012 J. Phys.: Condens. Matter.24 355002 · doi:10.1088/0953-8984/24/35/355002
[16] Tomellini M and Fanfoni M 2010 Int. J. Nanosci.9 1 · doi:10.1142/S0219581X10006569
[17] Fanfoni M, Placidi E, Arciprete A, Orsini E, Patella F and Balzarotti A 2007 Phys. Rev. B 75 245312 · doi:10.1103/PhysRevB.75.245312
[18] Zhang P, Balint D and Lin J 2011 Phil. Mag.91 4555 · doi:10.1080/14786435.2011.613860
[19] Konishi T and Tsukamoto S 2011 Surf. Sci.605 L1 · doi:10.1016/j.susc.2010.12.034
[20] Eising G and Kooi B J 2012 Phys. Rev. B 85 214108 · doi:10.1103/PhysRevB.85.214108
[21] Kooi B J 2006 Phys. Rev. B 73 054103 · doi:10.1103/PhysRevB.73.054103
[22] Kooi B J 2004 Phys. Rev. B 70 224108 · doi:10.1103/PhysRevB.70.224108
[23] Lazar E A, Mason J K, MacPherson R D and Srolovitz D J 2012 Phys. Rev. Lett.109 095505 · doi:10.1103/PhysRevLett.109.095505
[24] Ratto F, Johnston T W, Heun S and Rosei F 2008 Surf. Sci.602 249 · doi:10.1016/j.susc.2007.10.025
[25] Zaninetti L 2009 Phys. Lett. A 373 3223 · Zbl 1233.81042 · doi:10.1016/j.physleta.2009.07.010
[26] Teran A V and Bill A 2010 Phys. Rev. B 81 075319 · doi:10.1103/PhysRevB.81.075319
[27] Rickman J M 2010 Physica A 389 5155 · doi:10.1016/j.physa.2010.07.027
[28] Kim S 2004 Nonlinear Anal. Model. Control9 233 · Zbl 1176.93008
[29] Norman G E and Stegailov V V 2013 Math. Mod. Comput. Simul.5 305-333 · Zbl 1289.81021 · doi:10.1134/S2070048213040108
[30] González D and Einstein T L 2011 Phys. Rev. E 84 051135 · doi:10.1103/PhysRevE.84.051135
[31] Le Caër G and Delannay R 1993 J. Phys. A: Math. Gen.26 3931 · doi:10.1088/0305-4470/26/16/011
[32] Weaire D and Kermode J P 1983 Phil. Mag. B 48 245 · doi:10.1080/13642818308228287
[33] Weaire D and Rivier N 1984 Contemp. Phys.25 59 · doi:10.1080/00107518408210979
[34] Farjas J and Roura P 2007 Phys. Rev. B 75 184112 · doi:10.1103/PhysRevB.75.184112
[35] Okabe A, Boots B, Sugihara K and Chiu S N 2000 Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (New York: Wiley) · Zbl 0946.68144 · doi:10.1002/9780470317013
[36] Axe J D and Yamada Y 1986 Phys. Rev. B 34 1599 · doi:10.1103/PhysRevB.34.1599
[37] Møller J 1994 Lectures on Random Voronoi Tessellations (New York: Springer) · Zbl 0812.60016 · doi:10.1007/978-1-4612-2652-9
[38] Tanemura M 2003 Forma18 221 · Zbl 1474.62086
[39] Hilhorst H J 2016 J. Stat. Mech. 053303 · Zbl 1459.82277 · doi:10.1088/1742-5468/2016/05/053303
[40] Hilhorst H J 2014 J. Stat. Mech. P04015 · Zbl 1457.82128 · doi:10.1088/1742-5468/2014/04/P04015
[41] Hilhorst H J and Lazar E A 2014 J. Stat. Mech. P10021 · doi:10.1088/1742-5468/2014/10/P10021
[42] Hilhorst H J 2009 J. Stat. Mech. P05007 · Zbl 1456.60041 · doi:10.1088/1742-5468/2009/05/P05007
[43] Hilhorst H J 2007 J. Phys. A: Math. Theor.40 2615 · Zbl 1120.65002 · doi:10.1088/1751-8113/40/11/002
[44] Ferenc J-S and Neda Z 2007 Physica A 385 518 · doi:10.1016/j.physa.2007.07.063
[45] Calka P 2003 Adv. Appl. Probab.35 863 · Zbl 1038.60008 · doi:10.1017/S0001867800012623
[46] Calka P and Schreiber T 2005 Ann. Probab.33 1625 · Zbl 1084.60008 · doi:10.1214/009117905000000134
[47] Calka P and Chenavier N 2014 Extremes17 359 · Zbl 1316.60021 · doi:10.1007/s10687-014-0184-y
[48] Pineda E, Garrido V and Crespo D 2007 Phys. Rev. E 75 040107 · doi:10.1103/PhysRevE.75.040107
[49] Pineda E and Crespo D 2007 J. Stat. Mech. P06007 · Zbl 1456.82858 · doi:10.1088/1742-5468/2007/06/P06007
[50] Pineda E and Crespo D 2008 Phys. Rev. E 78 021110 · doi:10.1103/PhysRevE.78.021110
[51] Pineda E, Bruna P and Crespo D 2004 Phys. Rev. E 70 066119 · doi:10.1103/PhysRevE.70.066119
[52] Gabrielli A 2009 J. Stat. Mech. P07001 · doi:10.1088/1742-5468/2007/07/P07001
[53] Kiang T 1966 Z. Astrophys.64 433
[54] Korobov A 2007 Phys. Rev. B 76 085430 · doi:10.1103/PhysRevB.76.085430
[55] Korobov A 2009 Phys. Rev. E 79 031607 · doi:10.1103/PhysRevE.79.031607
[56] Korobov A 2014 Phys. Rev. E 89 032405 · doi:10.1103/PhysRevE.89.032405
[57] Korobov A 1999 J. Math. Chem.25 365 · Zbl 0959.92031 · doi:10.1023/A:1019161206547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.