×

A Künneth theorem for configuration spaces. (English) Zbl 1522.55017

Let \[ \mathrm{Conf}_k(X)=\{ (x_1,\ldots, x_k)\in X^k\mid x_i\not= x_j\text{ if }i\not= j\} \] denote the ordered configuration space of \(k\) points in a topological space \(X\). In this paper, the authors study the homology of an ordered configuration space of a product \(X=M\times N\), where \(M\) and \(N\) are parallelizable manifolds of dimensions \(m\) and \(n\), respectively. Building on earlier work [W. Dwyer et al., Trans. Am. Math. Soc. 371, No. 4, 2963–2985 (2019; Zbl 1408.18016)], they consider the sequence \(\mathrm{Conf}(M)=(\mathrm{Conf}_k(M))_{k\geq 0}\) of configuration spaces of \(M\) as a module over the little \(m\)-cubes operad \({\mathcal{C}}_m\), and similarly for \(N\) and \(M\times N\).
Let \(R\) be a commutative ring, and assume \(H_\ast(\mathrm{Conf}_k(M);R)\) and \(H_\ast(\mathrm{Conf}_k(N);R)\) are \(R\)-projective for all \(k\geq 0\). The main theorem of the paper says that there is a natural, convergent spectral sequence \[ E^2_{p,q}\cong H_p\bigl( H_\ast(\mathrm{Conf}(M);R)\bigstar^{\mathbb{L}} H_\ast(\mathrm{Conf}(N);R)\bigr)_q \Rightarrow H_{p+q}(\mathrm{Conf}(M\times N);R) \] of \(R\)-linear \({\mathcal{C}}_{m+n}\)-modules. Here \(\bigstar\) denotes the linearized Boardman-Vogt tensor product. The authors also show that if \(R\) is a field of characteristic zero, then this spectral sequence degenerates at the term \(E^2\). The proof of the collapse relies on Kontsevich’s formality theorem, as extended by B. Fresse and T. Willwacher [J. Eur. Math. Soc. (JEMS) 22, No. 7, 2047–2133 (2020; Zbl 1445.18014)], and applies to any field over which formality holds.
These results reduce the computation of the rational homology of ordered configuration spaces of products – assuming knowledge of the factors – to a purely algebraic problem in the representation theory of certain combinatorial categories

MSC:

55R80 Discriminantal varieties and configuration spaces in algebraic topology

References:

[1] D.Ayala and J.Francis, Factorization homology of topological manifolds, J. Topol.8 (2015), no. 4, 1045-1084. · Zbl 1350.55009
[2] R.Andrade, From manifolds to invariants of \(E_n\)‐algebras, Ph.D. thesis, MIT, 2010.
[3] V.Arnold, The cohomology ring of the group of dyed braids, Mat. Zametiki5 (1969), 227-231. · Zbl 0277.55002
[4] G.Arone and V.Tuchin, On the rational homology of high dimensional analogues of spaces of long knots, Geom. Topol.18 (2014), no. 3, 1261-1322. · Zbl 1312.57034
[5] M.Brinkmeier, Tensor product of little cubes, https://www.math.uni‐bielefeld.de/sfb343/preprints/pr00098.pdf.gz, 2000.
[6] J. M.Boardman and R. M.Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, vol. 347, Springer‐Verlag, Berlin, 1973. MR 0420609 (54 #8623a). · Zbl 0285.55012
[7] M.Barr and C.Wells, Toposes, triples, and theories, Repr. Theory Appl. Categ. (2005), no. 12, x+288. Corrected reprint of the 1985 original [MR0771116]. MR 2178101. http://www.tac.mta.ca/tac/reprints/articles/12/tr12.pdf. · Zbl 1081.18006
[8] T.Church, J. S.Ellenberg, and B.Farb, FI‐modules and stability for representations of symmetric groups, Duke Math. J.164 (2015), no. 9, 1833-1910. · Zbl 1339.55004
[9] F.Cohen, T.Lada, and J. P.May, The homology of iterated loop spaces, Lecture Notes in Mathematics, vol. 533, Springer, Berlin‐New York, 1976. · Zbl 0334.55009
[10] G. C.Drummond‐Cole and B.Knudsen, Betti numbers of configuration spaces of surfaces, J. London Math. Soc.96 (2017), no. 2, 367-393. · Zbl 1385.55008
[11] W.Dwyer and K.Hess, The Boardman‐Vogt tensor product of operadic bimodules, Contemp. Math.620 (2014), 71-98. · Zbl 1349.18018
[12] W.Dwyer, K.Hess, and B.Knudsen, Configuration spaces of products, Trans. Amer. Math. Soc.371 (2019), 2963-2985. · Zbl 1408.18016
[13] G.Dunn, Tensor product of operads and iterated loop spaces, J. Pure Appl. Algebra50 (1988), no. 3, 237-258. MR 938617 (89g:55012). · Zbl 0672.55004
[14] B.Farb, Representation stability, Contribution to the proceedings of the ICM 2014, Seoul, arXiv:1404.4065.
[15] E.Fadell and L.Neuwirth, Configuration spaces, Math. Scand.10 (1962), 111-118. · Zbl 0136.44104
[16] B.Fresse, Modules over operads and functors, Lecture Notes in Mathematics, vol. 1967, Springer, Berlin, 2009. MR 2494775 (2010e:18009). · Zbl 1178.18007
[17] Y.Félix and J.‐C.Thomas, Configuration spaces and Massey products, Int. Math. Res. Not. IMRN33 (2004), 1685-1702. · Zbl 1078.55018
[18] B.Fresse and T.Willwacher, The intrinsic formality of \(E_n\)‐operads, J. Eur. Math. Soc.22, 2047-2133. · Zbl 1445.18014
[19] E. M.Feichtner and G. M.Ziegler, Integral cohomology algebras of ordered configuration spaces of spheres, Doc. Math.5 (2000), 115-140. · Zbl 0992.55014
[20] N.Johnson and J.Noel, Lifting homotopy \(T\)‐algebra maps to strict maps, Adv. Math.264 (2014), 593-645. · Zbl 1306.55006
[21] M.Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys.48 (1999), 35-72. · Zbl 0945.18008
[22] J.Lurie, Higher algebra, math.harvard.edu/ lurie.
[23] J.Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659 (2010j:18001). · Zbl 1175.18001
[24] P.Lambrechts and I.Volić, Formality of the little \(n\)‐disks operad, Memoirs of the American Mathematical Society, American Mathematical Society, Providence, RI, 2014. · Zbl 1308.55006
[25] M.Maguire, Unstable cohomology of configuration spaces, arXiv:1612.06314.
[26] J. P.May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, vol. 271, Springer, Berlin‐New York, 1972. · Zbl 0244.55009
[27] D.McDuff, Configuration spaces of positive and negative particles, Topology14 (1975), 91-107. · Zbl 0296.57001
[28] S.Moriya, Non‐formality of the odd dimensional framed little balls operads, Int. Math. Res. Not.2019 (2019), 625-639. · Zbl 1440.18039
[29] L.Moser, Injective and projective model structures on enriched diagram categories, Homol. Homotopy Appl.21 (2019), no. 2, 279-300. · Zbl 1425.18003
[30] T.Pirashvili and B.Richter, Hochschild and cyclic homology via functor homology, J. K‐Theory25 (2002), 39-49. · Zbl 1013.16004
[31] P.Salvatore, Planar non‐formality of the little discs operad in characteristic two, Quart. J. Math.70 (2019), 689-701. · Zbl 1422.55022
[32] C.Schiessl, Betti numbers of unordered configuration spaces of the torus, arXiv:1602.04748.
[33] B.Totaro, Configuration spaces of algebraic varieties, Topology35 (1996), no. 4, 1057-1067. · Zbl 0857.57025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.