×

Anomalous dimensions from soft Regge constants. (English) Zbl 07701840

Summary: Using an effective field theory (EFT) formalism for forward scattering, we reconsider the factorization of \(2 \rightarrow 2\) scattering amplitudes in the Regge limit. Expanding the amplitude in gauge invariant operators labelled by the number of Glauber exchanges, allows us to further factorize the standard impact factors into separate collinear and soft functions. The soft functions are universal, and describe radiative corrections to the Reggeized gluon states exchanged by the collinear projectiles. Remarkably, we find that the one-loop soft function for the single Reggeized gluon state is given to \(\mathcal{O}(\epsilon)\) in terms of the two-loop cusp and two-loop rapidity anomalous dimensions. We argue that this iterative structure follows from the simple action of crossing symmetry in the forward scattering limit, which in the EFT allows us to replace the divergent part of a soft loop by a much simpler Glauber loop. We use this correspondence to provide a simple calculation of the two-loop Regge trajectory using the EFT. We then explore its implications at higher perturbative orders, and derive the maximally matter dependent contributions to the Regge trajectory to all loop orders, i.e. the terms \(\sim\alpha_s^{k+1}n_f^k\) for any \(k\), where \(n_f\) is the number of massless flavors. These simplifications suggests that the EFT approach to the Regge limit will be helpful to explore and further understand the structure of the Regge limit.

MSC:

81T12 Effective quantum field theories
81V05 Strong interaction, including quantum chromodynamics
81T17 Renormalization group methods applied to problems in quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory

References:

[1] M. Gell-Mann et al., Elementary Particles of Conventional Field Theory as Regge Poles. III, Phys. Rev.133 (1964) B145 [INSPIRE]. · Zbl 0125.22302
[2] S. Mandelstam, Non-Regge Terms in the Vector-Spinor Theory, Phys. Rev.137 (1965) B949 [INSPIRE]. · Zbl 0128.46203
[3] McCoy, BM; Wu, TT, Theory of Fermion Exchange in Massive Quantum Electrodynamics at High-Energy. 1, Phys. Rev. D, 13, 369 (1976) · doi:10.1103/PhysRevD.13.369
[4] M.T. Grisaru, H.J. Schnitzer and H.-S. Tsao, Reggeization of elementary particles in renormalizable gauge theories: vectors and spinors, Phys. Rev. D8 (1973) 4498 [INSPIRE].
[5] V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B60 (1975) 50 [INSPIRE].
[6] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP44 (1976) 443 [Zh. Eksp. Teor. Fiz.71 (1976) 840] [INSPIRE].
[7] L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys.23 (1976) 338 [Yad. Fiz.23 (1976) 642] [INSPIRE].
[8] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP45 (1977) 199 [Zh. Eksp. Teor. Fiz.72 (1977) 377] [INSPIRE].
[9] I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys.28 (1978) 822 [Yad. Fiz.28 (1978) 1597] [INSPIRE].
[10] L.N. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP63 (1986) 904 [Zh. Eksp. Teor. Fiz.90 (1986) 1536] [INSPIRE].
[11] L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B452 (1995) 369 [hep-ph/9502308] [INSPIRE].
[12] L.N. Lipatov, Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models, JETP Lett.59 (1994) 596 [Pisma Zh. Eksp. Teor. Fiz.59 (1994) 571] [hep-th/9311037] [INSPIRE].
[13] Faddeev, LD; Korchemsky, GP, High-energy QCD as a completely integrable model, Phys. Lett. B, 342, 311 (1995) · doi:10.1016/0370-2693(94)01363-H
[14] Dixon, LJ; Duhr, C.; Pennington, J., Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP, 10, 074 (2012) · doi:10.1007/JHEP10(2012)074
[15] Del Duca, V., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP, 08, 152 (2016) · Zbl 1390.81627 · doi:10.1007/JHEP08(2016)152
[16] Del Duca, V.; Duhr, C.; Marzucca, R.; Verbeek, B., The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy, JHEP, 10, 001 (2017) · Zbl 1383.81289 · doi:10.1007/JHEP10(2017)001
[17] Del Duca, V.; Duhr, C.; Dulat, F.; Penante, B., All two-loop MHV remainder functions in multi-Regge kinematics, JHEP, 01, 162 (2019) · Zbl 1409.81145 · doi:10.1007/JHEP01(2019)162
[18] Del Duca, V., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP, 06, 116 (2018) · Zbl 1395.81160 · doi:10.1007/JHEP06(2018)116
[19] Dixon, LJ; von Hippel, M.; McLeod, AJ, The four-loop six-gluon NMHV ratio function, JHEP, 01, 053 (2016) · doi:10.1007/JHEP01(2016)053
[20] Almelid, O., Bootstrapping the QCD soft anomalous dimension, JHEP, 09, 073 (2017) · Zbl 1382.81196 · doi:10.1007/JHEP09(2017)073
[21] S. Caron-Huot et al., Six-Gluon amplitudes in planar \(\mathcal{N} = 4\) super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE].
[22] Basso, B.; Caron-Huot, S.; Sever, A., Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP, 01, 027 (2015) · doi:10.1007/JHEP01(2015)027
[23] Bargheer, T.; Chestnov, V.; Schomerus, V., The Multi-Regge Limit from the Wilson Loop OPE, JHEP, 05, 002 (2020) · Zbl 1437.81087 · doi:10.1007/JHEP05(2020)002
[24] V. Del Duca et al., All-order amplitudes at any multiplicity in the multi-Regge limit, Phys. Rev. Lett.124 (2020) 161602 [arXiv:1912.00188] [INSPIRE].
[25] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Dual superconformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory, Nucl. Phys. B, 828, 317 (2010) · Zbl 1203.81112 · doi:10.1016/j.nuclphysb.2009.11.022
[26] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B, 826, 337 (2010) · Zbl 1203.81175 · doi:10.1016/j.nuclphysb.2009.10.013
[27] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B, 815, 142 (2009) · Zbl 1194.81316 · doi:10.1016/j.nuclphysb.2009.02.015
[28] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B, 795, 52 (2008) · Zbl 1219.81191 · doi:10.1016/j.nuclphysb.2007.11.007
[29] Drummond, JM; Korchemsky, GP; Sokatchev, E., Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B, 795, 385 (2008) · Zbl 1219.81227 · doi:10.1016/j.nuclphysb.2007.11.041
[30] I.A. Korchemskaya and G.P. Korchemsky, Evolution equation for gluon Regge trajectory, Phys. Lett. B387 (1996) 346 [hep-ph/9607229] [INSPIRE].
[31] I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B437 (1995) 127 [hep-ph/9409446] [INSPIRE].
[32] Del Duca, V., Iterating QCD scattering amplitudes in the high-energy limit, JHEP, 02, 112 (2018) · Zbl 1387.81359 · doi:10.1007/JHEP02(2018)112
[33] Rothstein, IZ; Stewart, IW, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP, 08, 025 (2016) · Zbl 1390.81365 · doi:10.1007/JHEP08(2016)025
[34] C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X_sγin effective field theory, Phys. Rev. D63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
[35] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
[36] C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B516 (2001) 134 [hep-ph/0107001] [INSPIRE]. · Zbl 0971.81569
[37] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
[38] C.W. Bauer et al., Hard scattering factorization from effective field theory, Phys. Rev. D66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
[39] V. Del Duca et al., An infrared approach to Reggeization, Phys. Rev. D85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].
[40] Del Duca, V., The infrared structure of gauge theory amplitudes in the high-energy limit, JHEP, 12, 021 (2011) · Zbl 1306.81333 · doi:10.1007/JHEP12(2011)021
[41] Falcioni, G., Scattering amplitudes in the Regge limit and the soft anomalous dimension through four loops, JHEP, 03, 053 (2022) · Zbl 1522.81716 · doi:10.1007/JHEP03(2022)053
[42] V. Del Duca and E.W.N. Glover, The High-energy limit of QCD at two loops, JHEP10 (2001) 035 [hep-ph/0109028] [INSPIRE].
[43] Del Duca, V.; Falcioni, G.; Magnea, L.; Vernazza, L., High-energy QCD amplitudes at two loops and beyond, Phys. Lett. B, 732, 233 (2014) · Zbl 1360.81293 · doi:10.1016/j.physletb.2014.03.033
[44] G. Falcioni et al., Disentangling the Regge Cut and Regge Pole in Perturbative QCD, Phys. Rev. Lett.128 (2022) 132001 [arXiv:2112.11098] [INSPIRE].
[45] Caola, F., Three-loop helicity amplitudes for four-quark scattering in massless QCD, JHEP, 10, 206 (2021) · doi:10.1007/JHEP10(2021)206
[46] I. Moult, S. Raman, G. Ridgway and I.W. Stewart, to appear.
[47] Caron-Huot, S.; Gardi, E.; Vernazza, L., Two-parton scattering in the high-energy limit, JHEP, 06, 016 (2017) · Zbl 1380.81390 · doi:10.1007/JHEP06(2017)016
[48] Fadin, VS; Kotsky, MI; Fiore, R., Gluon Reggeization in QCD in the next-to-leading order, Phys. Lett. B, 359, 181 (1995) · doi:10.1016/0370-2693(95)01016-J
[49] V.S. Fadin, R. Fiore and M.I. Kotsky, Gluon Regge trajectory in the two loop approximation, Phys. Lett. B387 (1996) 593 [hep-ph/9605357] [INSPIRE].
[50] V.S. Fadin, R. Fiore and A. Quartarolo, Reggeization of quark quark scattering amplitude in QCD, Phys. Rev. D53 (1996) 2729 [hep-ph/9506432] [INSPIRE].
[51] J. Blumlein, V. Ravindran and W.L. van Neerven, On the gluon Regge trajectory in \(O( {\alpha}_s^2 )\), Phys. Rev. D58 (1998) 091502 [hep-ph/9806357] [INSPIRE].
[52] Korchemsky, GP; Radyushkin, AV, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B, 283, 342 (1987) · doi:10.1016/0550-3213(87)90277-X
[53] O. Erdoğan and G. Sterman, Gauge Theory Webs and Surfaces, Phys. Rev. D91 (2015) 016003 [arXiv:1112.4564] [INSPIRE].
[54] Falcioni, G.; Gardi, E.; Milloy, C., Relating amplitude and PDF factorisation through Wilson-line geometries, JHEP, 11, 100 (2019) · doi:10.1007/JHEP11(2019)100
[55] Chiu, J-Y; Jain, A.; Neill, D.; Rothstein, IZ, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP, 05, 084 (2012) · Zbl 1348.81437 · doi:10.1007/JHEP05(2012)084
[56] Caron-Huot, S., When does the gluon reggeize?, JHEP, 05, 093 (2015) · doi:10.1007/JHEP05(2015)093
[57] D.I. Kazakov, Multiloop Calculations: Method of Uniqueness and Functional Equations, Teor. Mat. Fiz.62 (1984) 127 [INSPIRE].
[58] Kotikov, AV; Teber, S., Multi-loop techniques for massless Feynman diagram calculations, Phys. Part. Nucl., 50, 1 (2019) · doi:10.1134/S1063779619010039
[59] A. Gao, I. Moult, S. Raman, G. Ridgway and I.W. Stewart, to appear.
[60] Moult, I.; Solon, MP; Stewart, IW; Vita, G., Fermionic Glauber Operators and Quark Reggeization, JHEP, 02, 134 (2018) · doi:10.1007/JHEP02(2018)134
[61] Del Duca, V.; Duhr, C.; Glover, EWN, Iterated amplitudes in the high-energy limit, JHEP, 12, 097 (2008) · Zbl 1329.81282 · doi:10.1088/1126-6708/2008/12/097
[62] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[63] Caron-Huot, S.; Herranen, M., High-energy evolution to three loops, JHEP, 02, 058 (2018) · Zbl 1387.81262 · doi:10.1007/JHEP02(2018)058
[64] Falcioni, G.; Gardi, E.; Milloy, C.; Vernazza, L., Climbing three-Reggeon ladders: four-loop amplitudes in the high-energy limit in full colour, Phys. Rev. D, 103, L111501 (2021) · doi:10.1103/PhysRevD.103.L111501
[65] Del Duca, V.; Marzucca, R.; Verbeek, B., The gluon Regge trajectory at three loops from planar Yang-Mills theory, JHEP, 01, 149 (2022) · Zbl 1521.81441 · doi:10.1007/JHEP01(2022)149
[66] S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE]. · Zbl 1109.81374
[67] Henn, JM; Korchemsky, GP; Mistlberger, B., The full four-loop cusp anomalous dimension in \(\mathcal{N} = 4\) super Yang-Mills and QCD, JHEP, 04, 018 (2020) · Zbl 1436.81136 · doi:10.1007/JHEP04(2020)018
[68] T. Huber et al., The four-loop cusp anomalous dimension from the N = 4 Sudakov form factor, Phys. Lett. B807 (2020) 135543 [arXiv:1912.13459] [INSPIRE]. · Zbl 1473.81114
[69] Gracia, NG; Mateu, V., Toward massless and massive event shapes in the large-β_0limit, JHEP, 07, 229 (2021) · doi:10.1007/JHEP07(2021)229
[70] F. Caola et al., Three-Loop Gluon Scattering in QCD and the Gluon Regge Trajectory, Phys. Rev. Lett.128 (2022) 212001 [arXiv:2112.11097] [INSPIRE].
[71] Bhattacharya, A.; Manohar, AV; Schwartz, MD, Quark-gluon backscattering in the Regge limit at one-loop, JHEP, 02, 091 (2022) · Zbl 1522.81195
[72] A.V. Bogdan, V. Del Duca, V.S. Fadin and E.W.N. Glover, The quark Regge trajectory at two loops, JHEP03 (2002) 032 [hep-ph/0201240] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.