×

Weakened fractional-order accumulation operator for ill-conditioned discrete grey system models. (English) Zbl 1505.62506


MSC:

62M99 Inference from stochastic processes
Full Text: DOI

References:

[1] Maaouane, M.; Zouggar, S.; Krajačić, G.; Zahboune, H., Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods, Energy, 225, 120270 (2021)
[2] Tang, S.; Li, T.; Guo, Y.; Zhu, R.; Qu, H., Correction of various environmental influences on Doppler wind lidar based on multiple linear regression model, Renew. Energy, 184, 933-947 (2022)
[3] Revuelta, I.; Santos-Arteaga, F. J.; Montagud-Marrahi, E., A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients, Artif. Intell. Rev., 54, 6, 4653-4684 (2021)
[4] Ma, X.; Xie, M.; Suykens, J. A.K., A novel neural grey system model with Bayesian regularization and its applications, Neurocomputing, 456, 61-75 (2021)
[5] Saxena, A., Grey forecasting models based on internal optimization for novel corona virus (COVID-19), Appl. Soft Comput., 111, 107735 (2021)
[6] Liu, L.; Wu, L., Forecasting the renewable energy consumption of the european countries by an adjacent non-homogeneous grey model, Appl. Math. Model., 89, 5, 1932-1948 (2021) · Zbl 1481.91130
[7] Du, G.; Zhang, J.; Luo, Z.; Ma, F.; Ma, L.; Li, S., Joint imbalanced classification and feature selection for hospital readmissions, Knowl. Based Syst., 200, 106020 (2020)
[8] Javed, S. A.; Cudjoe, D., A novel grey forecasting of greenhouse gas emissions from four industries of China and India, Sustain. Prod. Consumption, 29, 777-790 (2022)
[9] Khan, A. M.; Osińska, M., How to predict energy consumption in BRICS countries?, Energies, 14, 10, 2749 (2021)
[10] Zeng, B.; Tong, M.; Ma, X., A new-structure grey Verhulst model: development and performance comparison, Appl. Math. Model., 81, 522-537 (2020) · Zbl 1481.62074
[11] Ma, X.; Xie, M.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X., The novel fractional discrete multivariate grey system model and its applications, Appl. Math. Model., 70, 402-424 (2019) · Zbl 1464.62389
[12] Wei, B.; Xie, N., On unified framework for discrete-time grey models: extensions and applications, ISA Trans., 107, 1-11 (2020)
[13] Xia, M.; Wong, W. K., A seasonal discrete grey forecasting model for fashion retailing, Knowl. Based Syst., 57, 119-126 (2014)
[14] 1000-6788(2014)07-1822-06
[15] Xie, N.-M.; Liu, S.-F.; Yang, Y.-J.; Yuan, C.-Q., On novel grey forecasting model based on non-homogeneous index sequence, Appl. Math. Model., 37, 7, 5059-5068 (2013) · Zbl 1426.62280
[16] Liu, S.; Liu, C.; Pang, H.; Feng, T.; Dong, Z., Forecasting China’s per capita living energy consumption by employing a novel DGM \((1, 1, t^\alpha )\) model with fractional order accumulation, Math. Probl. Eng., 2021, 1-12 (2021)
[17] Luo, D.; Wei, B., A unified treatment approach for a class of discrete grey forecasting models and its application, Syst. Eng.-Theory Pract., 39, 451-462 (2019)
[18] Liu, C.; Wu, W.-Z.; Xie, W., Study of the generalized discrete grey polynomial model based on the quantum genetic algorithm, J. Supercomput., 77, 10, 11288-11309 (2021)
[19] Wu, L.-F.; Liu, S.-F.; Cui, W.; Liu, D.-L.; Yao, T.-X., Non-homogenous discrete grey model with fractional-order accumulation, Neural Comput. Appl., 25, 5, 1215-1221 (2014)
[20] Liu, C.; Xie, W.; Wu, W.-Z.; Zhu, H., Predicting chinese total retail sales of consumer goods by employing an extended discrete grey polynomial model, Eng. Appl. Artif. Intell., 102, 104261 (2021)
[21] Gao, P.; Zhan, J.; Liu, J., Fractional-order accumulative linear time-varying parameters discrete grey forecasting model, Math. Probl. Eng., 2019, 1-11 (2019) · Zbl 1435.93006
[22] Wu, L.; Zhao, H., Discrete grey model with the weighted accumulation, Soft Comput., 23, 23, 12873-12881 (2019) · Zbl 1436.62451
[23] Liu, X.; Zhu, J.; Zou, K., The development trend of China’s aging population: a forecast perspective, Complex Intell. Syst. (2022)
[24] Chen, Y.; Lifeng, W.; Lianyi, L.; Kai, Z., Fractional hausdorff grey model and its properties, Chaos Solitons Fractals, 138, 109915 (2020) · Zbl 1490.62287
[25] Liu, L.; Chen, Y.; Wu, L., The damping accumulated grey model and its application, Commun. Nonlinear Sci. Numer. Simul., 95, 105665 (2021) · Zbl 1457.62269
[26] Liu, S.; Lin, Y., Grey Information: Theory and Practical Applications (2006), Springer · Zbl 1122.93059
[27] Dai, H., The Theory on Matrix (2001), Science Press: Science Press Beijing
[28] Li, W.; Tong, D., Numerical Calculation Method (2009), China University of Petroleum Press
[29] Barnett, N. S.; Dragomir, S. S., An additive reverse of the Cauchy-Bunyakovsky-Schwarz integral inequality, Appl. Math. Lett., 21, 4, 388-393 (2008) · Zbl 1133.26305
[30] Qu, W., Combinatorial Mathematics (1989), Peking University press: Peking University press Beijing
[31] Wu, L.; Zhang, Z., Grey multivariable convolution model with new information priority accumulation, Appl. Math. Model., 62, 595-604 (2018) · Zbl 1462.62558
[32] Ma, X.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X., The conformable fractional grey system model, ISA Trans., 96, 255-271 (2020)
[33] Wu, W.; Ma, X.; Zhang, Y.; Li, W.; Wang, Y., A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries, Sci. Total Environ., 707, 135447 (2020)
[34] Liu, C.; Lao, T.; Wu, W.-Z.; Xie, W.; Zhu, H., An optimized nonlinear grey bernoulli prediction model and its application in natural gas production, Expert Syst. Appl., 194, 116448 (2022)
[35] Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S., Equilibrium optimizer: a novel optimization algorithm, Knowl. Based Syst., 191, 105190 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.