×

Emergence of solitonic structures in hierarchical Korteweg-de Vries systems. (English) Zbl 1475.74073

Berezovski, Arkadi (ed.) et al., Applied wave mathematics II. Selected topics in solids, fluids, and mathematical methods and complexity. Cham: Springer. Math. Planet Earth 6, 89-124 (2019).
Summary: We explore numerically different types of solutions of a hierarchical Korteweg-de Vries equation [P. Giovine and F. Oliveri, Meccanica 30, No. 4, 341–357 (1995; Zbl 0837.73018)] that describes inter alia wave propagation in microstructured (dilatant granular) materials. This equation contains three material parameters that collectively determine the type of solutions. The simulations focus on the effect the microstructure has on the field of motion driven by harmonic, cnoidal and \(\operatorname{\text{sech}}^2\)-type initial waves. The simulations employ a Fourier transform based pseudospectral method and have been performed for a wide range of material parameters. The results are interpreted in terms of the properties of Korteweg-de Vries solitons. The analysis reveals considerable evolution and transformations of the field of motions during the propagation of signals of various kind due to the effect of the microstructure. A large part of the numerically tracked solutions have properties that match the core properties of solitons. On many occasions the emerging waves in the system propagate at a constant speed, keep their shape and interact with other similar entities elastically. The number of emerging solitons markedly depends on the ratio of dispersion parameters for micro- and macrostructure, and on the shape of the initial wave.
For the entire collection see [Zbl 1443.35005].

MSC:

74J35 Solitary waves in solid mechanics
74E20 Granularity
74M25 Micromechanics of solids
74S25 Spectral and related methods applied to problems in solid mechanics

Citations:

Zbl 0837.73018

Software:

FFTW; SciPy; F2PY; ODEPACK
Full Text: DOI

References:

[1] Bedford, A., Drumheller, D.: On volume fraction theories for discretized materials. Acta Mechanica 48, 173-184 (1983). https://doi.org/10.1007/BF01170415 · Zbl 0527.73124 · doi:10.1007/BF01170415
[2] Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81, 229-240 (2011). https://doi.org/10.1007/s00419-010-0412-0 · Zbl 1271.74014 · doi:10.1007/s00419-010-0412-0
[3] Bhatnagar, P.L.: Nonlinear Waves in One-Dimensional Dispersive Systems. Oxford University Press, Oxford (1979) · Zbl 0487.35001
[4] Bjørkavåg, M., Kalisch, H.: Exponential convergence of a spectral projection of the KdV equation. Phys. Lett. A 365(4), 278-283 (2007). https://doi.org/10.1016/j.physleta.2006.12.085 · Zbl 1203.35208 · doi:10.1016/j.physleta.2006.12.085
[5] Christov, C., Velarde, M.: Dissipative solitons. Phys. D 86, 323-347 (1995). https://doi.org/10.1016/0167-2789(95)00111-G · Zbl 0885.35108 · doi:10.1016/0167-2789(95)00111-G
[6] Christov, I.: Internal solitary waves in the ocean: analysis using the periodic, inverse scattering transform. Math. Comput. Simulat. 80, 192-201 (2009). https://doi.org/10.1016/j.matcom.2009.06.005 · Zbl 1174.86004 · doi:10.1016/j.matcom.2009.06.005
[7] Christov, I.: Hidden solitons in the Zabusky-Kruskal experiment: Analysis using the periodic, inverse scattering transform. Math. Comput. Simulat. 82(6), 1069-1078 (2012). https://doi.org/10.1016/j.matcom.2010.05.021 · Zbl 1251.35107 · doi:10.1016/j.matcom.2010.05.021
[8] Christov, I.C.: On a hierarchy of nonlinearly dispersive generalized Korteweg-de Vries evolution equations. Proc. Estonian Acad. Sci. 64(3), 212-218 (2015). https://doi.org/10.3176/proc.2015.3.02 · Zbl 1333.35232 · doi:10.3176/proc.2015.3.02
[9] Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72, 016603 (2005). https://doi.org/10.1103/PhysRevE.72.016603 · doi:10.1103/PhysRevE.72.016603
[10] De Domenico, D., Askes, H., Aifantis, E.C.: Capturing wave dispersion in heterogeneous and microstructured materials through a three-length-scale gradient elasticity formulation. J. Mech. Behav. Mater. 27(5-6) (2018). https://doi.org/10.1515/jmbm-2018-2002 · doi:10.1515/jmbm-2018-2002
[11] Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989). https://doi.org/10.1002/zamm.19900700817 · Zbl 0661.35001 · doi:10.1002/zamm.19900700817
[12] Engelbrecht, J., Salupere, A.: On the problem of periodicity and hidden solitons for the KdV model. Chaos 15, 015114 (2005). https://doi.org/10.1063/1.1858781 · doi:10.1063/1.1858781
[13] Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Phil. Mag. 85(33-35), 4127-4141 (2005). https://doi.org/10.1080/14786430500362769 · Zbl 1345.74058 · doi:10.1080/14786430500362769
[14] Engelbrecht, J., Salupere, A., Tamm, K.: Waves in microstructured solids and the Boussinesq paradigm. Wave Motion 48(8), 717-726 (2011). https://doi.org/10.1016/j.wavemoti.2011.04.001 · Zbl 1365.74139 · doi:10.1016/j.wavemoti.2011.04.001
[15] Eringen, A.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909-923 (1966). https://doi.org/10.1016/0020-7225(67)90004-3 · Zbl 0146.21502 · doi:10.1016/0020-7225(67)90004-3
[16] Eringen, A.: Microcontinuum Field Theories I: Foundations and Solids. Springer, Berlin (1999) · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[17] Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003). https://doi.org/10.1142/5157 · Zbl 1056.74001 · doi:10.1142/5157
[18] Fish, J., Filonova, V., Yuan, Z.: Reduced order computational continua. Comput. Methods Appl. Mech. Engrg. 221-222, 104-116 (2012). https://doi.org/10.1016/j.cma.2012.02.010 · Zbl 1253.74085 · doi:10.1016/j.cma.2012.02.010
[19] Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511626357 · Zbl 0844.65084 · doi:10.1017/CBO9780511626357
[20] Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216-231 (2005). https://doi.org/10.1109/JPROC.2004.840301 · doi:10.1109/JPROC.2004.840301
[21] Galgani, L., Giorgilli, A., Martinoli, A., Vanzini, S.: On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates. Physica D 59(4), 334-348 (1992). https://doi.org/10.1016/0167-2789(92)90074-W · Zbl 0775.70023 · doi:10.1016/0167-2789(92)90074-W
[22] Galindo-Nava, E., del Castillo, P.R.D.: A model for the microstructure behaviour and strength evolution in lath martensite. Acta Materialia 98, 81-93 (2015). https://doi.org/10.1016/j.actamat.2015.07.018 · doi:10.1016/j.actamat.2015.07.018
[23] Giovine, P.: An extended continuum theory for granular media. In: Capriz, G., Marino, P.M., Giovine, P. (eds.) Mathematical Models of Granular Matter. Lecture Notes in Mathematics, vol. 1937, pp. 167-192. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78277-3_8 · Zbl 1298.74054 · doi:10.1007/978-3-540-78277-3_8
[24] Giovine, P., Oliveri, F.: Dynamics and wave propagation in dilatant granular materials. Meccanica 30(4), 341-357 (1995). https://doi.org/10.1007/BF00993418 · Zbl 0837.73018 · doi:10.1007/BF00993418
[25] Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Rat. Mech. Anal. 44(4), 249-266 (1972). https://doi.org/10.1007/BF00284326 · Zbl 0243.76005 · doi:10.1007/BF00284326
[26] Guo, N., Zhao, J.: A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int. J. Numer. Methods Eng. 99(11), 789-818 (2014). https://doi.org/10.1002/nme.4702 · Zbl 1352.74359 · doi:10.1002/nme.4702
[27] Hindmarsh, A.C.: ODEPACK, a systematized collection of ODE solvers. In: Stepleman, R.S., et al. (eds.) Scientific Computing, pp. 55-64. North-Holland, Amsterdam (1983)
[28] Horsley, S.A.R.: The KdV hierarchy in optics. J. Optics 18(8), 085104 (2016). https://doi.org/10.1088/2040-8978/18/8/085104 · doi:10.1088/2040-8978/18/8/085104
[29] Ilison, L.: Solitons and solitary waves in hierarchical Korteweg-de Vries type systems. PhD thesis, Tallinn University of Technology (2009) · Zbl 1169.65337
[30] Ilison, L., Salupere, A.: Solitons in hierarchical Korteweg-de Vries type systems. Proc. Estonian Acad. Sci. Phys. Math. 52(1), 135-144 (2003) · Zbl 1153.74341
[31] Ilison, O., Salupere, A.: Propagation of sech^2-type solitary waves in higher-order KdV-type systems. Chaos Solitons Fractals 26(2), 453-465 (2005). https://doi.org/10.1016/j.chaos.2004.12.045 · Zbl 1153.74340 · doi:10.1016/j.chaos.2004.12.045
[32] Ilison, L., Salupere, A.: Interactions of Solitary Waves in Hierarchical KdV-Type System. Research Report Mech 291/08. Institute of Cybernetics at Tallinn University of Technology, Tallinn (2008) · Zbl 1169.65337
[33] Ilison, L., Salupere, A.: Propagation of \(\operatorname{\text{sech}}^2\)-type solitary waves in hierarchical KdV-type systems. Math. Comput. Simulation. 79, 3314-3327 (2009). https://doi.org/10.1016/j.matcom.2009.05.003 · Zbl 1169.65337 · doi:10.1016/j.matcom.2009.05.003
[34] Ilison, L., Salupere, A., Peterson, P.: On the propagation of localised perturbations in media with microstructure. Proc. Estonian Acad. Sci. Phys. Math. 56(2), 84-92 (2007) · Zbl 1139.74422
[35] Janno, J., Engelbrecht, J.: An inverse solitary wave problem related to microstructured materials. Inverse Problems 21, 2019-2034 (2005). https://doi.org/10.1088/0266-5611/21/6/014 · Zbl 1112.35145 · doi:10.1088/0266-5611/21/6/014
[36] Jones, E., Oliphant, T., Peterson. P., et al: SciPy: Open source scientific tools for Python (2007). http://www.scipy.org
[37] Kalisch, H.: Derivation and comparison of model equations for interfacial capillary-gravity waves in deep water. Math. Comput. Simulation 74(2-3), 168-178 (2007) · Zbl 1108.76018 · doi:10.1016/j.matcom.2006.10.008
[38] Khusnutdinova, K., Tranter, M.: D’Alembert-type solution of the Cauchy problem for a Boussinesq-type equation with the Ostrovsky term. arXiv preprint arXiv:180808150 (2018). https://doi.org/10.1016/j.matcom.2006.10.008 · Zbl 1108.76018 · doi:10.1016/j.matcom.2006.10.008
[39] Kliakhandler, I., Porubov, A., Velarde, M.: Localized finite-amplitude disturbances and selection of solitary waves. Phys. Rev. E 62(4), 4959-4962 (2000). https://doi.org/10.1103/PhysRevE.62.4959 · doi:10.1103/PhysRevE.62.4959
[40] Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. Dover (2000). https://doi.org/10.1007/978-3-662-08549-3 · Zbl 0121.00103 · doi:10.1007/978-3-662-08549-3
[41] Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422-443 (1895). https://doi.org/10.1080/14786449508620739 · JFM 26.0881.02 · doi:10.1080/14786449508620739
[42] Kurkina, O., Kurkin, A., Pelinovsky, E., Stepanyants, Y., Talipova, T.: Nonlinear models of finite-amplitude interfacial waves in shallow two-layer fluid. In: Berezovski, A., Soomere, T. (eds.) Applied Wave Mathematics II. Selected Topics in Solids, Fluids, and Mathematical Methods and Complexity, p. 61-88. Springer (2019) (this collection). https://doi.org/10.1007/978-3-030-29951-4_4 · Zbl 1446.35127 · doi:10.1007/978-3-030-29951-4_4
[43] Lints, M., Salupere, A., Dos Santos, S.: Formation and detection of solitonic waves in dilatant granular materials: Potential application for nonlinear NDT. In: 7th International Workshop NDT in Progress: NDT of Lightweight Materials (2013) https://www.ndt.net
[44] Majorana, A., Tracinà, R.: (2019) Exact and numerical solutions to a Mindlin microcontinuum model. arXiv preprint, arXiv:190102813 (2019)
[45] Marchant, T.R.: Undular bores and the initial-boundary value problem for the modified Korteweg-de Vries equation. Wave Motion 45(4), 540-555 (2008). https://doi.org/10.1016/j.wavemoti.2007.11.003 · Zbl 1231.35208 · doi:10.1016/j.wavemoti.2007.11.003
[46] Matouš, K., Geers, M.G., Kouznetsova, V.G., Gillman, A.: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330, 192-220 (2017). https://doi.org/10.1016/j.jcp.2016.10.070 · doi:10.1016/j.jcp.2016.10.070
[47] Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993) · Zbl 0797.73001 · doi:10.1007/978-1-4899-4481-8
[48] Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999) · Zbl 0943.74002
[49] Maugin, G.A.: Solitons in elastic solids (1938-2010). Mech. Res. Commun. 38(5), 341-349 (2011). https://doi.org/10.1016/j.mechrescom.2011.04.009 · Zbl 1272.74364 · doi:10.1016/j.mechrescom.2011.04.009
[50] Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51-78 (1964). https://doi.org/10.1007/BF00248490 · Zbl 0119.40302 · doi:10.1007/BF00248490
[51] Newman, W.I., Campbell, D.K., Hyman, J.M.: Identifying coherent structures in nonlinear wave propagation. Chaos 1(1), 77-94 (1991). https://doi.org/10.1063/1.165813 · Zbl 0900.35320 · doi:10.1063/1.165813
[52] Pastrone, F.: Hierarchical structures in complex solids with microscales. Proc. Estonian Acad. Sci. 59(2), 79-86 (2010). https://doi.org/10.3176/proc.2010.2.04 · Zbl 1375.74014 · doi:10.3176/proc.2010.2.04
[53] Pastrone, F., Engelbrecht, J.: Nonlinear waves and solitons in complex solids. Math. Mech. Solids 21(1), 52-59 (2016). https://doi.org/10.1177/1081286515572245 · Zbl 1335.74030 · doi:10.1177/1081286515572245
[54] Peterson, P.: F2PY: a tool for connecting Fortran and Python programs. Int. J. Comput. Sci. Engrng. 4(4), 296-305 (2009). https://doi.org/10.1504/IJCSE.2009.029165 · doi:10.1504/IJCSE.2009.029165
[55] Peterson, P., van Groesen, E.: A direct and inverse problem for wave crests modelled by interactions of two solitons. Phys. D 141(3-4), 316-332 (2000). https://doi.org/10.1016/S0167-2789(00)00037-3 · Zbl 0961.35133 · doi:10.1016/S0167-2789(00)00037-3
[56] Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore (2003). https://doi.org/10.1142/5238 · Zbl 1058.74005 · doi:10.1142/5238
[57] Porubov, A., Osokina, A.: Double dispersion equation for nonlinear waves in a graphene-type hexagonal lattice. Wave Motion 89, 185-192 (2019). https://doi.org/10.1016/j.wavemoti.2019.03.013 · Zbl 1524.74290 · doi:10.1016/j.wavemoti.2019.03.013
[58] Porubov, A.V., Gursky, V.V., Maugin, G.A.: Selection of localized nonlinear seismic waves. Proc. Estonian Acad. Sci. Phys. Math. 52(1), 85-93 (2003) · Zbl 1153.74339
[59] Porubov, A., Maugin, G.A., Gursky, V., Krzhizhanovskaya, V.: On some localized waves described by the extended KdV equation. C. R. Mecanique 333(7), 528-533 (2005). https://doi.org/10.1016/j.crme.2005.06.003 · doi:10.1016/j.crme.2005.06.003
[60] Russell, J.S.: Report on waves. Richard and John E Tailor (1844)
[61] Salupere, A.: Pseudospectral method and discrete spectral analysis. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics. Selected Topics in Solids, Fluids, and Mathematical Methods, pp. 301-333. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00585-5_16 · Zbl 1191.74033 · doi:10.1007/978-3-642-00585-5_16
[62] Salupere, A.: On hidden solitons in KdV related systems. Math. Comput. Simulat. 127, 252-262 (2016). https://doi.org/10.1016/j.matcom.2014.04.012 · Zbl 1520.35138 · doi:10.1016/j.matcom.2014.04.012
[63] Salupere, A., Ilison, L.: Numerical simulation of interaction of solitons and solitary waves in granular materials. In: Ganghoffer, J., Pastrone, F. (eds.) Mechanics of Microstructured Solids 2: Cellular Materials, Fibre Reinforced Solids and Soft Tissues, Lecture Notes in Applied and Computational Mechanics, vol. 50, pp. 21-28. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-05171-5_3 · Zbl 1189.74075 · doi:10.1007/978-3-642-05171-5_3
[64] Salupere, A., Maugin, G.A., Engelbrecht, J.: Korteweg-de Vries soliton detection from a harmonic input. Phys. Lett. A 192(1), 5-8 (1994). https://doi.org/10.1016/0375-9601(94)91006-5 · Zbl 0959.35506 · doi:10.1016/0375-9601(94)91006-5
[65] Salupere, A., Maugin, G.A., Engelbrecht, J., Kalda, J.: On the KdV soliton formation and discrete spectral analysis. Wave Motion 23, 49-66 (1996). https://doi.org/10.1016/0165-2125(95)00040-2 · Zbl 0968.76524 · doi:10.1016/0165-2125(95)00040-2
[66] Salupere, A., Engelbrecht, J., Peterson, P.: Long-time behaviour of soliton ensembles. Part I—Emergence of ensembles. Chaos Solitons Fractals 14, 1413-1424 (2002). https://doi.org/10.1016/S0960-0779(02)00069-3 · Zbl 1037.35072 · doi:10.1016/S0960-0779(02)00069-3
[67] Salupere, A., Peterson, P., Engelbrecht, J.: Long-time behaviour of soliton ensembles. Part II—periodical patterns of trajectories. Chaos Solitons Fractals 15(1), 29-40 (2003a). https://doi.org/10.1016/S0960-0779(02)00070-X · doi:10.1016/S0960-0779(02)00070-X
[68] Salupere, A., Engelbrecht, J., Peterson, P.: On the long-time behaviour of soliton ensembles. Math. Comput. Simulation 62(1-2), 137-147 (2003b). https://doi.org/10.1016/S0378-4754(02)00178-7 · Zbl 1015.65056 · doi:10.1016/S0378-4754(02)00178-7
[69] Salupere, A., Engelbrecht, J., Ilison, O., Ilison, L.: On solitons in microstructured solids and granular materials. Math. Comput. Simulation 69(5-6), 502-513 (2005). https://doi.org/10.1016/j.matcom.2005.03.015 · Zbl 1078.35525 · doi:10.1016/j.matcom.2005.03.015
[70] Salupere, A., Ilison, L., Tamm, K.: On numerical simulation of propagation of solitons in microstructured media. In: Todorov, M. (ed.) Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics, vol. 1067 of AIP Conference Proceedings, pp. 155-165. Melville, NY (2008). https://doi.org/10.1063/1.3030782 · Zbl 1179.65133 · doi:10.1063/1.3030782
[71] Salupere, A., Lints, M., Engelbrecht, J.: On solitons in media modelled by the hierarchical KdV equation. Arch. Appl. Mech. 84(9), 1583-1593 (2014). https://doi.org/10.1007/s00419-014-0861-y · Zbl 1341.35145 · doi:10.1007/s00419-014-0861-y
[72] Settimi, V., Trovalusci, P., Rega, G.: Dynamical properties of a composite microcracked bar based on a generalized continuum formulation. Contin. Mech. Thermodyn. (2019). https://doi.org/10.1007/s00161-019-00761-7 · doi:10.1007/s00161-019-00761-7
[73] Soomere, T.: Interaction of Kadomtsev-Petviashvili solitons with unequal amplitudes. Phys. Lett. A 332(1-2), 74-81 (2004). https://doi.org/10.1016/j.physleta.2004.09.030 · Zbl 1123.35347 · doi:10.1016/j.physleta.2004.09.030
[74] Wazwaz, A.M.: Analytic study for fifth-order KdV-type equations with arbitrary power nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 12(6), 904-909 (2007). https://doi.org/10.1016/j.cnsns.2005.10.001 · Zbl 1111.35316 · doi:10.1016/j.cnsns.2005.10.001
[75] Wazwaz, A.M.: New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations. Commun. Nonlinear Sci. Numer. Simul. 13(2), 331-339 (2008). https://doi.org/10.1016/j.cnsns.2006.03.013 · Zbl 1131.35385 · doi:10.1016/j.cnsns.2006.03.013
[76] Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974) · Zbl 0373.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.