×

Equilibrium fluctuations for the discrete Boltzmann equation. (English) Zbl 0976.82039

The author considers the fluctuation field \[ \xi^{(L)}_{\alpha}=\sqrt{N} \Biggl({1\over{N}}\sum_{i=1}^N \delta_{x_i(t)} \chi_{(\alpha_i=\alpha)} -f_{\alpha} (x,t) dx\Biggr) \] of a probabilistic discrete velocity particle system on a \(d\)-dimensional torus in the limit where \(N L^{-d}\) stays uniformly positive and bounded. Two particles within a distance of order \(L^{-1}\) collide stochastically through a continuously differentiable potential. If the system is in thermal equilibrium, i.e., if the \(f_{\alpha}\) satisfy the Maxwell equilibrium conditions for discrete velocity models, it is proved that the \(\xi_{\alpha}^L\) converges (as \(N\rightarrow \infty, \quad L\rightarrow 0, \quad NL^{-d} \rightarrow\)const.) to an Ornstein-Uhlenbeck process.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] H. van Beijeren, III, O. E. Lanford, J. L. Lebowitz, and H. Spohn, Equilibrium time correlation functions in the low-density limit , J. Statist. Phys. 22 (1980), no. 2, 237-257. · Zbl 0508.60089 · doi:10.1007/BF01008050
[2] N. Bellomo and T. Gustafsson, The discrete Boltzmann equation: A review of the mathematical aspects of the initial and initial-boundary value problems , Rev. Math. Phys. 3 (1991), no. 2, 137-162. · Zbl 0737.76065 · doi:10.1142/S0129055X91000060
[3] S. Caprino and M. Pulvirenti, A cluster expansion approach to a one-dimensional Boltzmann equation: A validity result , Comm. Math. Phys. 166 (1995), no. 3, 603-631. · Zbl 0811.60099 · doi:10.1007/BF02099889
[4] R. Gatignol, Théorie cinétique des gaz à répartition discrète de vitesses , Lecture Notes in Phys., vol. 36, Springer-Verlag, Berlin, 1975.
[5] R. Holley and D. W. Stroock, Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions , Publ. Res. Inst. Math. Sci. 14 (1978), no. 3, 741-788. · Zbl 0412.60065 · doi:10.2977/prims/1195188837
[6] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum , Comm. Math. Phys. 105 (1986), no. 2, 189-203. · Zbl 0609.76083 · doi:10.1007/BF01211098
[7] F. King, BBGKY hierarchy for positive potentials , Ph.D. thesis, Univ. of California, Berkeley.
[8] III, O. E. Lanford, Time evolution of large classical systems , Dynamical Systems, Theory and Applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., vol. 38, Springer-Verlag, Berlin, 1975, pp. 1-111. · Zbl 0329.70011 · doi:10.1007/3-540-07171-7_1
[9] I. Mitoma, Tightness of probabilities on \(C([0,1];\mathcal S^\prime )\) and \(D([0,1];\mathcal S^\prime )\) , Ann. Probab. 11 (1983), no. 4, 989-999. · Zbl 0527.60004 · doi:10.1214/aop/1176993447
[10] R. Monaco and L. Preziosi, Fluid Dynamic Applications of the Discrete Boltzmann Equation , Ser. Adv. Math. Appl. Sci., vol. 3, World Scientific, River Edge, N.J., 1991. · Zbl 0761.76001
[11] M. Pulvirenti, Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum , Comm. Math. Phys. 113 (1987), no. 1, 79-85. · Zbl 0665.76088 · doi:10.1007/BF01221398
[12] F. Rezakhanlou, Kinetic limits for a class of interacting particle systems , Probab. Theory Related Fields 104 (1996), no. 1, 97-146. · Zbl 0838.60085 · doi:10.1007/s004400050019
[13] F. Rezakhanlou, Propagation of chaos for particle systems associated with discrete Boltzmann equation , Stochastic Process. Appl. 64 (1996), no. 1, 55-72. · Zbl 0881.60087 · doi:10.1016/S0304-4149(96)00082-8
[14] F. Rezakhanlou and III, J. E. Tarver, Boltzmann-Grad limit for a particle system in continuum , Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 6, 753-796. · Zbl 0888.60076 · doi:10.1016/S0246-0203(97)80112-4
[15] H. Spohn, Fluctuations around the Boltzmann equation , J. Statist. Phys. 26 (1981), no. 2, 285-305. · doi:10.1007/BF01013172
[16] H. Spohn, Large Scale Dynamics of Interacting Particles , Texts Monographs Phys., Springer-Verlag, Berlin, 1991. · Zbl 0742.76002
[17] K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics , Hiroshima Math. J. 18 (1988), no. 2, 245-297. · Zbl 0656.60110
[18] K. Uchiyama, On the Boltzmann-Grad limit for the Broadwell model of the Boltzmann equation , J. Statist. Phys. 52 (1988), no. 1-2, 331-355. · Zbl 1083.82532 · doi:10.1007/BF01016418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.