×

Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. (English) Zbl 1495.92036

Summary: Mathematical models in epidemiology have been studied in the literature to understand the mechanism that underlies AIDS-related cancers, providing us with a better insight towards cancer immunity and viral oncogenesis. In this study, we propose a dynamical fractional order HIV-1 model in Caputo sense which involves the interactions between cancer cells, healthy CD4+T lymphocytes, and virus infected CD4+T lymphocytes leading to chaotic behavior. The model has been investigated for the existence and uniqueness of its solution via fixed point theory, while the unique non-negative solution remains bounded within the biologically feasible region. The stability analysis of the model is performed and the biological relevance of the equilibria is also discussed in the paper. The numerical simulations are obtained under different instances of fractional order \(\alpha\). It is observed that, as the fractional power decreases from ’one’ the chaotic behavior becomes more and more attractive. The existence of chaotic attractors for various species interaction has been observed in 2D and 3D cases. The time series evolution of the species showing different distributions under different fractional order \(\alpha\). The results show that order of the fractional derivative has a significant effect on the dynamic process.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology
37N25 Dynamical systems in biology
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Lou, J.; Ruggeri, T., A time delay model about AIDS-related cancer: equilibria, cycles and chaotic behavior, Ricerche Mat, 56, 2, 195-198 (2007) · Zbl 1150.92007
[2] Antman, K.; Chang, Y., Kaposi’s sarcoma, New Engl J Med, 342, 14, 1027-1038 (2000)
[3] Chang, Y.; Cesarman, E.; Pessin, M. S.; Lee, F.; Culpepper, J.; Knowles, D. M.; Moore, P. S., Identification of herpesvirus-like DNA sequences in AIDS-associated kaposi’s sarcoma, Science, 266, 5192, 1865-1869 (1994)
[4] Duarte, J.; Januário, C.; Martins, N.; Ramos, C. C.; Rodrigues, C.; Sardanyés, J., Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells, Numer Algor., 77, 1, 261-288 (2018) · Zbl 1384.92043
[5] Lou, J.; Ruggeri, T.; Tebaldi, C., Modeling cancer in HIV-1 infected individuals: equilibria, cycles and chaotic behavior, Math Biosci Eng, 3, 2, 313 (2006) · Zbl 1097.92030
[6] Straus, D. J., HIV-associated lymphomas, HIV Assoc Lymphomas, 16, 260 (2001)
[7] Burnet, F. M., Immunological surveillance in neoplasia, Immunol Rev, 7, 1, 3-25 (1971)
[8] Boshoff, C.; Weiss, R., AIDS-related malignancies, Nat Rev Cancer, 2, 5, 373-382 (2002)
[9] Gross, L., Intradermal immunization of c3h mice against a sarcoma that originated in an animal of the same line, Cancer Res, 3, 5, 326-333 (1943)
[10] Klein, G.; Klein, E., Genetic studies of the relationship of tumour-host cells: detection of an allelic difference at a single gene locus in a small fraction of a large tumour-cell population, Nature, 178, 4547, 1389-1391 (1956)
[11] Cranage, M. P.; Whatmore, A. M.; Sharpe, S. A.; Cook, N.; Polyanskaya, N.; Leech, S.; Hall, G. A., Macaques infected with live attenuated SIVmac are protected against superinfection via the rectal mucosa, Virology, 229, 1, 143-154 (1997)
[12] Klatzmann, D.; Barre-Sinoussi, F.; Nugeyre, M. T.; Danquet, C.; Vilmer, E.; Griscelli, C.; Chermann, J. C., Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer t lymphocytes, Science, 225, 4657, 59-63 (1984)
[13] Klatzmann, D.; Champagne, E.; Chamaret, S.; Gruest, J.; Guetard, D.; Hercend, T.; Montagnier, L., T-lymphocyte t4 molecule behaves as the receptor for human retrovirus LAV, Nature, 312, 5996, 767-768 (1984)
[14] Gupta, P.; Balachandran, R.; Ho, M.; Enrico, A.; Rinaldo, C., Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody, J Virol, 63, 5, 2361-2365 (1989)
[15] Diegel, M. L.; Moran, P. A.; Gilliland, L. K.; Damle, N. K.; Hayden, M. S.; Zarling, J. M.; Ledbetter, J. A., Regulation of HIV production by blood mononuclear cells from HIV-infected donors: II. HIV-1 production depends on T cell-monocyte interaction, AIDS Res Hum Retrov, 9, 5, 465 (1993)
[16] Schrier, R. D.; Mccutchan, J. A.; Wiley, C. A., Mechanisms of immune activation of human immunodeficiency virus in monocytes/macrophages, J Virol, 67, 10, 5713-5720 (1993)
[17] Callaway, D. S.; Perelson, A. S., HIV-1 infection and low steady state viral loads, Bull Math Biol, 64, 1, 29-64 (2002) · Zbl 1334.92227
[18] Kirschner, D.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, J Math Biol, 35, 7, 775-792 (1997) · Zbl 0876.92016
[19] Pearce-Pratt, R.; Phillips, D. M., Studies of adhesion of lymphocytic cells: implications for sexual transmission of human immunodeficiency virus, Biol Reprod, 48, 3, 431-445 (1993)
[20] Culshaw, R. V.; Ruan, S., A delay-differential equation model of HIV infection of CD4+ T-cells, Math Biosci, 165, 1, 27-39 (2000) · Zbl 0981.92009
[21] Lou, J.; Ma, Z.; Li, J.; Shao, Y.; Han, L., The impact of the CD8+ cell non-cytotoxic antiviral response (CNAR) and cytotoxic T lymphocyte (CTL) activity in a cell-to-cell spread model for HIV-1 with a time delay, J Biol Syst, 12, 01, 73-90 (2004) · Zbl 1099.34048
[22] Itik, M.; Banks, S. P., Chaos in a three-dimensional cancer model, Int J Bifurcat Chaos, 20, 1, 71-79 (2010) · Zbl 1183.34064
[23] Basir, F. A.; Adhurya, S.; Banerjee, M.; Venturino, E.; Ray, S., Modelling the effect of incubation and latent periods on the dynamics of vector-borne plant viral diseases, Bull Math Biol, 82, 94 (2020) · Zbl 1451.92273
[24] Noeiaghdam, S., A novel technique to solve the modified epidemiological model of computer viruses, SeMA J, 76, 1, 97-98 (2019) · Zbl 1420.68016
[25] Noeiaghdam, S.; Suleman, M.; Budak, H., Solving a modified nonlinear epidemiological model of computer viruses by homotopy analysis method, Math Sci, 12, 3, 211-222 (2018) · Zbl 1417.92193
[26] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives. yverdon-les-bains (1993), Gordon and Breach Science Publishers, Yverdon: Gordon and Breach Science Publishers, Yverdon Switzerland · Zbl 0818.26003
[27] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[28] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, 204 (2006), Elsevier · Zbl 1092.45003
[29] Katugampola, U. N., New approach to a generalized fractional integral, Appl Math Comput, 218, 3, 860-865 (2011) · Zbl 1231.26008
[30] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr Fract Differ Appl, 1, 2, 1-13 (2015)
[31] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm Sci, 20, 2, 763-769 (2016)
[32] Yavuz, M.; Özdemir, N., European vanilla option pricing model of fractional order without singular kernel, Fractal Fract, 2, 1, 3 (2018)
[33] Yavuz, M.; Özdemir, N., A different approach to the european option pricing model with new fractional operator, Math Model Nat Pheno, 13, 1, 12 (2018) · Zbl 1405.91658
[34] Owolabi, K. M.; Atangana, A., Numerical methods for fractional differentiation, Springer series in computational mathematics, 54 (2019) · Zbl 1429.65005
[35] Owolabi, K. M.; Atangana, A., On the formulation of adams-bashforth scheme with atangana-baleanu-caputo fractional derivative to model chaotic problems, Chaos, 29, 2, 023111 (2019) · Zbl 1409.34016
[36] Jha, B. K.; Joshi, H.; Dave, D. D., Portraying the effect of calcium-binding proteins on cytosolic calcium concentration distribution fractionally in nerve cells, Interdiscip Sci Comput Life Sci, 10, 4, 674-685 (2018)
[37] Naik, P. A.; Zu, J.; Owolabi, K. M., Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A, 545, 123816 (2020)
[38] Mekkaoui, T.; Hammouch, Z.; Kumar, D.; Singh, J., A new approximation scheme for solving ordinary differential equation with gomez-atangana-caputo fractional derivative, Methods of mathematical modelling: fractional differential equations, 51 (2019), CRC press
[39] Yavuz, M.; Bonyah, E., New approaches to the fractional dynamics of schistosomiasis disease model, Physica A, 525, 373-393 (2019) · Zbl 07565786
[40] Naik, P. A.; Zu, J.; Ghoreishi, M., Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method, Chaos Solitons Fractals, 131, 109500 (2020) · Zbl 1495.92094
[41] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numer Algorith, 36, 1, 31-52 (2004) · Zbl 1055.65098
[42] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Electron Trans Numer Anal, 5, 1, 1-6 (1997) · Zbl 0890.65071
[43] Odibat, Z. M.; Shawagfeh, N. T., Generalized Taylor’s formula, Appl Math Comput, 186, 1, 286-293 (2007) · Zbl 1122.26006
[44] Lin, W., Global existence theory and chaos control of fractional differential equations, J Math Anal Appl, 332, 1, 709-726 (2007) · Zbl 1113.37016
[45] Naik, P. A.; Yavuz, M.; Zu, J., The role of prostitution on HIV transmission with memory: A modeling approach, Alexandria Eng J, 59, 4, 2513-2531 (2020)
[46] Owolabi, K. M., Mathematical modelling and analysis of love dynamics: a fractional approach, Physica A, 525, 849-865 (2019) · Zbl 07565831
[47] Yavuz, M.; Ya kran, B., Conformable derivative operator in modelling neuronal dynamics, Appl Appl Math, 13, 2, 803-817 (2018) · Zbl 1406.35481
[48] Yavuz, M.; Özdemir, N., Analysis of an epidemic spreading model with exponential decay law, Math Sci Appl E-Notes, 8, 1, 142-154 (2020)
[49] Naik, P. A., Global dynamics of a fractional order SIR epidemic model with memory, Int J Biomath (2020) · Zbl 1461.92116
[50] Noeiaghdam, S.; Araghi, M. A.F.; Abbasbandy, S., Valid implementation of sinc-collocation method to solve the fuzzy fredholm integral equation, J Comput Appl Math, 370, 112632 (2020) · Zbl 1433.65356
[51] Noeiaghdam, S.; Araghi, M. A.F.; Abbasbandy, S., Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic, Numer Algorithms, 81, 1, 237-267 (2019) · Zbl 1412.65244
[52] Yavuz, M.; Sene, N., Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract, 4, 3, 35 (2020)
[53] Uçar, S.; Özdemir, N.; Koca, I.; Altun, E., Novel analysis of the fractional glucose-insulin regulatory system with non-singular kernel derivative, Eur Phys J Plus, 135, 6, 414 (2020)
[54] Avci, D.; Yavuz, M.; Özdemir, N., Fundamental solutions to the Cauchy and Dirichlet problems for a heat conduction equation equipped with the Caputo-Fabrizio differentiation, Heat Conduction: Methods, Applications and Research, 95-97 (2019), Nova Science Publishers
[55] Özdemir, N.; Uçar, S.; Eroglu, B. B.I., Dynamical analysis of fractional order model for computer virus propagation with kill signals, Int J Nonlinear Sci Numer Simul, 21, 3-4, 239-247 (2020) · Zbl 07336593
[56] Naik, P. A., Modeling the mechanics of calcium regulation in t lymphocyte: a finite element method approach, Int J Biomath, 13(5), 2050038 (2020) · Zbl 1461.92025
[57] Evirgen, F.; Özdemir, N.; Uçar, S., System analysis of HIV infection model with CD4+ T under non-singular kernel derivative, Appl Math Nonlinear Sci, 5, 1, 139-146 (2020) · Zbl 1524.92093
[58] Li, M.; Zu, J., The review of differential equation models of HBV infection dynamics, J Virol Methods, 266, 103-113 (2019)
[59] Ahmad, I.; Ahmad, H.; Thounthong, P.; Chu, Y. M.; Cesarano, C., Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method, Symmetry, 12, 7, 1195 (2020)
[60] Basir, F. A.; Ray, S., Impact of farming awareness based roguing,insecticide spraying and optimal control on the dynamics of mosaic disease, Ricerche Mat (2020) · Zbl 1462.49076
[61] Sajjadi, S. S.; Baleanu, D.; Jajarmi, A.; Pirouz, H. M., A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos Solitons Fractals, 138, 109919 (2020) · Zbl 1490.92005
[62] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Asad, J. H., The fractional features of a harmonic oscillator with position-dependent mass, Commun Theor Phys, 72, 5, 055002 (2020)
[63] Jajarmi, A.; Baleanu, D., On the fractional optimal control problems with a general derivative operator, Asian J Control (2019) · Zbl 1420.92039
[64] Jajarmi, A.; Baleanu, D., A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems, Front Phys, 8, 220 (2020)
[65] Losada, J.; Nieto, J. J., Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1, 2, 87-92 (2015)
[66] Russell, J.; Cohn, R., Gronwall’s inequality (2013), Bookvika publishing: Bookvika publishing Cimmeria
[67] Oldham, K. B.; Spanier, J., Fractional calculus: theory and applications, Differentiation and integration to arbitrary order (1974), Academic Press: Academic Press New York London · Zbl 0428.26004
[68] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), John Wiley and Sons Inc. · Zbl 0789.26002
[69] Zu, J.; Li, M.; Fu, S.; Gu, Y., Modelling the evolutionary dynamics of host resistance-related traits in a susceptible-infected community with density-dependent mortality, Discrete Cont Dyn B, 25, 8, 3049-3086 (2020) · Zbl 1444.92073
[70] Wodarz, D.; Levy, D. N., Effect of different modes of viral spread on the dynamics of multiply infected cells in human immunodeficiency virus infection, J R Soc Interface, 8, 55, 289-300 (2011)
[71] Hanahan, D.; Weinberg, R. A., Hallmarks of cancer: the next generation, Cell, 144, 5, 646-674 (2011)
[72] Yavuz, M.; Yokus, A., Analytical and numerical approaches to nerve impulse model of fractional-order, Numer Meth Part Diff Eqs (2020) · Zbl 07777651
[73] Naik, P. A.; Zu, J.; Owolabi, M., Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos Solitons Fractals, 138, 109826 (2020) · Zbl 1490.37112
[74] Owolabi, K. M., Numerical patterns in reaction-diffusion system with the caputo and atangana-baleanu fractional derivatives, Chaos Solitons Fractals, 115, 160-169 (2018) · Zbl 1416.65305
[75] Atangana, A.; Owolabi, K. M., New numerical approach for fractional differential equations, Math Model Nat Pheno, 13, 1, 3 (2018) · Zbl 1406.65045
[76] Naik, P. A.; Zu, J.; Ghoreishi, M., Stability analysis and approximate solution of SIR epidemic model with crowley-martin type functional response and holling type-ii treatment rate by using homotopy analysis method, J Appl Anal Comput, 10, 4, 1482-1515 (2020) · Zbl 1455.34039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.