×

On bifurcations of symmetric elliptic orbits. (English) Zbl 07851469

Summary: We study bifurcations of symmetric elliptic fixed points in the case of \(p\):\(q\) resonances with odd \(q\geqslant 3\). We consider the case where the initial area-preserving map \(\bar{z}=\lambda z+Q(z,z^*)\) possesses the central symmetry, i. e., is invariant under the change of variables \(z\to-z\), \(z^*\to-z^*\). We construct normal forms for such maps in the case \(\lambda=e^{i2\pi\frac{p}{q}}\), where \(p\) and \(q\) are mutually prime integer numbers, \(p\leqslant q\) and \(q\) is odd, and study local bifurcations of the fixed point \(z=0\) in various settings. We prove the appearance of garlands consisting of four \(q\)-periodic orbits, two orbits are elliptic and two orbits are saddles, and describe the corresponding bifurcation diagrams for one- and two-parameter families. We also consider the case where the initial map is reversible and find conditions where nonsymmetric periodic orbits of the garlands are nonconservative (contain symmetric pairs of stable and unstable orbits as well as area-contracting and area-expanding saddles).

MSC:

37G05 Normal forms for dynamical systems
37G10 Bifurcations of singular points in dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
70K30 Nonlinear resonances for nonlinear problems in mechanics

References:

[1] Arnol’d, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, 1988, New York: Springer, New York · Zbl 0648.34002 · doi:10.1007/978-3-662-11832-0
[2] Arnol’d, V. I.; Kozlov, V. V.; Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 2006, Berlin: Springer, Berlin · Zbl 1105.70002 · doi:10.1007/978-3-540-48926-9
[3] Biragov, V. S., Bifurcations in a Two-Parameter Family of Conservative Mappings That Are Close to the Hénon Mapping, Selecta Math. Soviet., 9, 3, 10-24, 1987
[4] MacKay, R. S.; Shardlow, T., The Multiplicity of Bifurcations for Area-Preserving Maps, Bull. London Math. Soc., 26, 4, 382-394, 1994 · Zbl 0827.58042 · doi:10.1112/blms/26.4.382
[5] Dullin, H. R.; Meiss, J. D., Generalized Hénon Maps: The Cubic Diffeomorphisms of the Plane. Bifurcations, Patterns and Symmetry, Phys. D, 143, 1-4, 262-289, 2000 · Zbl 0961.37010 · doi:10.1016/S0167-2789(00)00105-6
[6] Gonchenko, M. S., On the Structure of \(1:4\) Resonances in Hénon Maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15, 11, 3653-3660, 2005 · Zbl 1097.37036 · doi:10.1142/S0218127405014301
[7] Simó, C.; Vieiro, A., Resonant Zones, Inner and Outer Splittings in Generic and Low Order Resonances of Area Preserving Maps, Nonlinearity, 22, 5, 1191-1245, 2009 · Zbl 1181.37077 · doi:10.1088/0951-7715/22/5/012
[8] Gonchenko, M.; Gonchenko, S.; Ovsyannikov, I., Bifurcations of Cubic Homoclinic Tangencies in Two-Dimensional Symplectic Maps, Math. Model. Nat. Phenom., 12, 1, 41-61, 2017 · Zbl 1384.37068 · doi:10.1051/mmnp/201712104
[9] Gonchenko, M.; Gonchenko, S. V.; Ovsyannikov, I.; Vieiro, A., On Local and Global Aspects of the \(1:4\) Resonance in the Conservative Cubic Hénon Maps, Chaos, 28, 4, 2018 · Zbl 1430.37059 · doi:10.1063/1.5022764
[10] Gonchenko, M. S.; Kazakov, A. O.; Samylina, E. A.; Shykhmamedov, A., On \(1:3\) Resonance under Reversible Perturbations of Conservative Cubic Hénon Maps, Regul. Chaotic Dyn., 27, 2, 198-216, 2022 · Zbl 1496.37049 · doi:10.1134/S1560354722020058
[11] Takens, F., Forced Oscillations and Bifurcations, Applications of Global Analysis: 1 (Utrecht State Univ., Utrecht, 1973), 1-59, 1974, Utrecht: Rijksuniversiteit Utrecht, Mathematisch Instituut, Utrecht
[12] Lamb, J. S. W.; Quispel, G. R. W., Reversible \(k\)-Symmetries in Dynamical Systems, Phys. D, 73, 4, 277-304, 1994 · Zbl 0814.58035 · doi:10.1016/0167-2789(94)90101-5
[13] Gonchenko, S. V.; Lamb, J. S. V.; Rios, I.; Turaev, D., Attractors and Repellers in the Neighborhood of Elliptic Points of Reversible Systems, Dokl. Math., 89, 1, 65-67, 2014 · Zbl 1301.37013 · doi:10.1134/S1064562414010207
[14] Gonchenko, S. V.; Turaev, D. V., On Three Types of Dynamics and the Notion of Attractor, Proc. Steklov Inst. Math., 297, 1, 116-137, 2017 · Zbl 1377.37040 · doi:10.1134/S0081543817040071
[15] Gonchenko, S. V., Reversible Mixed Dynamics: A Concept and Examples, Discontinuity Nonlinearity Complex., 5, 4, 365-374, 2016 · Zbl 1356.37043 · doi:10.5890/DNC.2016.12.003
[16] Delshams, A.; Gonchenko, M.; Gonchenko, S. V.; Lazaro, J. T., Mixed Dynamics of \(2\)-Dimensional Reversible Maps with a Symmetric Couple of Quadratic Homoclinic Tangencies, Discrete Contin. Dyn. Syst., 38, 9, 4483-4507, 2018 · Zbl 1397.37052 · doi:10.3934/dcds.2018196
[17] Gonchenko, S. V.; Gonchenko, M. S.; Sinitsky, I. O., On Mixed Dynamics of Two-Dimensional Reversible Diffeomorphisms with Symmetric Nontransversal Heteroclinic Cycles, Izv. Math., 84, 1, 23-51, 2020 · Zbl 1443.37022 · doi:10.1070/IM8786
[18] Delshams, A.; Gonchenko, M.; Gutiérrez, P., Exponentially Small Splitting of Separatrices and Transversality Associated to Whiskered Tori with Quadratic Frequency Ratio, SIAM J. Appl. Dyn. Syst., 15, 2, 981-1024, 2016 · Zbl 1352.37164 · doi:10.1137/15M1032776
[19] Delshams, A.; Gonchenko, M.; Gutiérrez, P., Exponentially Small Splitting of Separatrices Associated to 3D Whiskered Tori with Cubic Frequencies, Comm. Math. Phys., 378, 3, 1931-1976, 2020 · Zbl 1450.37056 · doi:10.1007/s00220-020-03832-y
[20] Lerman, L. M.; Turaev, D. V., Breakdown of Symmetry in Reversible Systems, Regul. Chaotic Dyn., 17, 3-4, 318-336, 2012 · Zbl 1280.37049 · doi:10.1134/S1560354712030082
[21] Roberts, J. A. G.; Quispel, G. R. W., Chaos and Time-Reversal Symmetry: Order and Chaos in Reversible Dynamical Systems, Phys. Rep., 216, 2-3, 63-177, 1992 · doi:10.1016/0370-1573(92)90163-T
[22] Gonchenko, M. S.; Gonchenko, S. V.; Safonov, K., Reversible Perturbations of Conservative Hénon-Like Maps, Discrete Contin. Dyn. Syst., 41, 4, 1875-1895, 2021 · Zbl 07314934 · doi:10.3934/dcds.2020343
[23] Gonchenko, S. V.; Safonov, K. A.; Zelentsov, N. G., Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Hénon Map, Regul. Chaotic Dyn., 27, 6, 647-667, 2022 · Zbl 1517.37051 · doi:10.1134/S1560354722060041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.