×

Controlled Loewner-Kufarev equation embedded into the universal Grassmannian. (English) Zbl 1459.35363

The authors introduce and study a class of controlled Loewner-Kufarev equations. The main result of the paper is the explicit formula of the solution in terms of the signature of the driving function through the action of words in generators of the Witt algebra.

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
30F10 Compact Riemann surfaces and uniformization
35C10 Series solutions to PDEs
58J65 Diffusion processes and stochastic analysis on manifolds
93C20 Control/observation systems governed by partial differential equations
30C25 Covering theorems in conformal mapping theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Alvarez-Gaum\'e, L. and Gomez, C. and Moore, G. and Vafa, C., Strings in the operator formalism, Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 303, 3, 455-521, (1988) · doi:10.1016/0550-3213(88)90391-4
[2] Amaba, Takafumi and Friedrich, Roland, Modulus of continuity of controlled {L}oewner–{K}ufarev equations and random matrices, Analysis and Mathematical Physics, 10, 2, 23, 29 pages, (2020) · Zbl 1441.30015 · doi:10.1007/s13324-020-00366-3
[3] Amaba, Takafumi and Friedrich, Roland and Murayama, Takuya, Univalence and holomorphic extension of the solution to {\( \omega \)}-controlled {L}oewner–{K}ufarev equations, Journal of Differential Equations, 269, 3, 2697-2704, (2020) · Zbl 1441.93118 · doi:10.1016/j.jde.2020.02.011
[4] Baudoin, Fabrice, An introduction to the geometry of stochastic flows, x+140, (2004), Imperial College Press, London · Zbl 1085.60002 · doi:10.1142/9781860947261
[5] Bracci, Filippo and Contreras, Manuel D. and D\'{\i}az-Madrigal, Santiago and Vasil’ev, Alexander, Classical and stochastic {L}\"owner–{K}ufarev equations, Harmonic and Complex Analysis and its Applications, Trends Math., 39-134, (2014), Birkh\"auser/Springer, Cham · Zbl 1318.30015 · doi:10.1007/978-3-319-01806-5_2
[6] Doyon, Benjamin, Conformal loop ensembles and the stress-energy tensor, Letters in Mathematical Physics, 103, 3, 233-284, (2013) · Zbl 1263.81253 · doi:10.1007/s11005-012-0594-1
[7] Duplantier, Bertrand and Nguyen, Chi and Nguyen, Nga and Zinsmeister, Michel, The coefficient problem and multifractality of whole-plane {SLE} & {LLE}, Annales Henri Poincar\'e. A Journal of Theoretical and Mathematical Physics, 16, 6, 1311-1395, (2015) · Zbl 1326.60119 · doi:10.1007/s00023-014-0351-3
[8] Ellacott, S. W., A survey of {F}aber methods in numerical approximation, Computers & Mathematics with Applications. An International Journal. Part B, 12, 5-6, 1103-1107, (1986) · Zbl 0626.65019 · doi:10.1016/0898-1221(86)90234-8
[9] Faber, Georg, \"Uber polynomische {E}ntwickelungen, Mathematische Annalen, 57, 3, 389-408, (1903) · JFM 34.0430.01 · doi:10.1007/BF01444293
[10] Friedrich, Roland and Kalkkinen, J., On conformal field theory and stochastic {L}oewner evolution, Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 687, 3, 279-302, (2004) · Zbl 1149.81352 · doi:10.1016/j.nuclphysb.2004.03.025
[11] Friedrich, Roland, The global geometry of stochastic {L}{\oe}wner evolutions, Probabilistic Approach to Geometry, Adv. Stud. Pure Math., 57, 79-117, (2010), Math. Soc. Japan, Tokyo · Zbl 1198.82030 · doi:10.2969/aspm/05710079
[12] Hidalgo, Rub\'en A. and Markina, Irina and Vasil’ev, Alexander, Finite dimensional grading of the {V}irasoro algebra, Georgian Mathematical Journal, 14, 3, 419-434, (2007) · Zbl 1132.30330 · doi:10.1515/GMJ.2007.419
[13] Johnston, Elgin, The {F}aber transform and analytic continuation, Proceedings of the American Mathematical Society, 103, 1, 237-243, (1988) · Zbl 0646.30004 · doi:10.2307/2047558
[14] Kawamoto, Noboru and Namikawa, Yukihiko and Tsuchiya, Akihiro and Yamada, Yasuhiko, Geometric realization of conformal field theory on {R}iemann surfaces, Communications in Mathematical Physics, 116, 2, 247-308, (1988) · Zbl 0648.35080 · doi:10.1007/BF01225258
[15] Kirillov, A. A. and Yuriev, D. V., Representations of the {V}irasoro algebra by the orbit method, Journal of Geometry and Physics, 5, 3, 351-363, (1988) · Zbl 0698.17015 · doi:10.1016/0393-0440(88)90029-0
[16] Kontsevich, M., CFT, SLE and phase boundaries · Zbl 1155.81367
[17] Krichever, Igor Moiseevich, Algebraic-geometric construction of the Zakharov-Shabat equations and their periodic solutions, Doklady Akademii Nauk SSSR, 17, 2, 394-397, (1976) · Zbl 0361.35007
[18] Krichever, Igor Moiseevich, Integration of nonlinear equations by the methods of algebraic geometry, Functional Analysis and Its Applications, 11, 1, 12-26, (1977) · Zbl 0368.35022 · doi:10.1007/BF01135528
[19] Krichever, Igor Moiseevich, Methods of algebraic geometry in the theory of non-linear equations, Russian Mathematical Surveys, 32, 6, no. 6, 185-213, (1977) · Zbl 0386.35002 · doi:10.1070/RM1977v032n06ABEH003862
[20] Lyons, Terry J. and Caruana, Michael and L\'evy, Thierry, Differential equations driven by rough paths, Lecture Notes in Math., 1908, xviii+109, (2007), Springer, Berlin · Zbl 1176.60002 · doi:10.1007/978-3-540-71285-5
[21] L\"owner, Karl, Untersuchungen \"uber schlichte konforme {A}bbildungen des {E}inheitskreises. {I}, Mathematische Annalen, 89, 1-2, 103-121, (1923) · JFM 49.0714.01 · doi:10.1007/BF01448091
[22] Kufareff, P. P., On one-parameter families of analytic functions, 13(55), 87-118, (1943) · Zbl 0061.14905
[23] Malliavin, Paul, The canonic diffusion above the diffeomorphism group of the circle, Comptes Rendus de l’Acad\'emie des Sciences. S\'erie I. Math\'ematique, 329, 4, 325-329, (1999) · Zbl 1006.60073 · doi:10.1016/S0764-4442(00)88575-4
[24] Markina, Irina and Prokhorov, Dmitri and Vasil’ev, Alexander, Sub-{R}iemannian geometry of the coefficients of univalent functions, Journal of Functional Analysis, 245, 2, 475-492, (2007) · Zbl 1147.30015 · doi:10.1016/j.jfa.2006.09.013
[25] Markina, Irina and Vasil’ev, Alexander, Virasoro algebra and dynamics in the space of univalent functions, Five Lectures in Complex Analysis, Contemp. Math., 525, 85-116, (2010), Amer. Math. Soc., Providence, RI · Zbl 1234.81127 · doi:10.1090/conm/525/10365
[26] Markina, Irina and Vasil’ev, Alexander, L\"owner-Kufarev evolution in the Segal-Wilson Grassmannian, Geometric Methods in Physics, Trends in Mathematics, 367-376, (2013), Birkh\"auser/Springer, Basel · Zbl 1264.81246 · doi:10.1007/978-3-0348-0448-6_33
[27] Markina, Irina and Vasil’ev, Alexander, Evolution of smooth shapes and integrable systems, Computational Methods and Function Theory, 16, 2, 203-229, (2016) · Zbl 1342.30003 · doi:10.1007/s40315-015-0133-z
[28] Mumford, D., An algebro-geometric construction of commuting operators and of solutions to the {T}oda lattice equation, {K}orteweg de{V}ries equation and related nonlinear equation, Proceedings of the {I}nternational {S}ymposium on {A}lgebraic {G}eometry ({K}yoto {U}niv., {K}yoto, 1977), 115-153, (1978), Kinokuniya Book Store, Tokyo · Zbl 0423.14007
[29] Pommerenke, Christian, Univalent functions (with a chapter on quadratic differentials by Gerd Jensen), Studia Mathematica/Mathematische Lehrb\"ucher, 25, 376, (1975), Vandenhoeck & Ruprecht, G\"ottingen · Zbl 0298.30014
[30] Schiffer, Menahem, Faber polynomials in the theory of univalent functions, Bulletin of the American Mathematical Society, 54, 503-517, (1948) · Zbl 0033.36301 · doi:10.1090/S0002-9904-1948-09027-9
[31] Schramm, Oded, Scaling limits of loop-erased random walks and uniform spanning trees, Israel Journal of Mathematics, 118, 221-288, (2000) · Zbl 0968.60093 · doi:10.1007/BF02803524
[32] Segal, Graeme and Wilson, George, Loop groups and equations of {K}d{V} type, Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 61, 5-65, (1985) · Zbl 0592.35112 · doi:10.1007/BF02698802
[33] Sola, Alan, Elementary examples of {L}oewner chains generated by densities, Annales. Universitatis Mariae Curie-Sk{\l}odowska. Sectio A. Mathematica, 67, 1, 83-101, (2013) · Zbl 1291.30114 · doi:10.2478/v10062-012-0024-y
[34] Takasaki, Kanehisa and Takebe, Takashi, {\({\rm SDiff}(2)\)} {T}oda equation – hierarchy, tau function, and symmetries, Letters in Mathematical Physics, 23, 3, 205-214, (1991) · Zbl 0741.35083 · doi:10.1007/BF01885498
[35] Teo, Lee-Peng, Analytic functions and integrable hierarchies-characterization of tau functions, Letters in Mathematical Physics, 64, 1, 75-92, (2003) · Zbl 1021.37040 · doi:10.1023/A:1024969729259
[36] Wiegmann, P. B. and Zabrodin, A., Conformal maps and integrable hierarchies, Communications in Mathematical Physics, 213, 3, 523-538, (2000) · Zbl 0973.37042 · doi:10.1007/s002200000249
[37] Yamada, Akira, Precise variational formulas for abelian differentials, Kodai Mathematical Journal, 3, 1, 114-143, (1980) · Zbl 0451.30039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.