×

Approximate controllability of Atangana-Baleanu fractional stochastic differential systems with non-Gaussian process and impulses. (English) Zbl 07920717

Summary: This paper aims to investigate a new class of Atangana-Baleanu fractional stochastic differential systems under the influence of the Rosenblatt process and non-instantaneous impulses. We analyze the existence and uniqueness of piecewise continuous mild solutions by using the fixed point method, fractional calculus, and resolvent family. Further, we define a new piecewise control function and investigate the approximate controllability results for the proposed problem. Finally, the main results are validated with the aid of an example.

MSC:

93E03 Stochastic systems in control theory (general)
26A33 Fractional derivatives and integrals
93B05 Controllability
60G12 General second-order stochastic processes
Full Text: DOI

References:

[1] S. H. Abid, S. Q. Hasan and U. J. Quaez, Approximate controllability of fractional Sobolev type stochastic differential equations driven by mixed fractional Brownian motion, J. Math. Sci., 3 (2015), 3-11.
[2] R. Agarwal, S. Hristova and D. O’Regan, Non-instantaneous impulses in caputo fractional differential equations, Fract. Calc. Appl. Anal., 20 (2017), 595-622. doi: 10.1515/fca-2017-0032. · Zbl 1370.34008 · doi:10.1515/fca-2017-0032
[3] H. M. Ahmed, Non-instantaneous impulsive conformable fractional stochastic delay integro-differential system with Rosenblatt process and control function, Qual. Theory Dyn. Syst., 21 (2022), Paper No. 15, 22 pp. doi: 10.1007/s12346-021-00544-z. · Zbl 1480.93033 · doi:10.1007/s12346-021-00544-z
[4] H. M. Ahmed, Hilfer fractional neutral stochastic partial differential equations with delay driven by Rosenblatt process, J. Control Decis., 9 (2022), 226-243. doi: 10.1080/23307706.2021.1953412. · doi:10.1080/23307706.2021.1953412
[5] H. M. Ahmed, M. M. El-Borai, A. S. Okb El Bab and M. Elsaid Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound. Value Probl., 2020 (2020), Paper No. 120, 25 pp. doi: 10.1186/s13661-020-01418-0. · Zbl 1485.93055 · doi:10.1186/s13661-020-01418-0
[6] D. Aimene, D. Baleanu and D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Solit. Fractals, 128 (2019), 51-57. doi: 10.1016/j.chaos.2019.07.027. · Zbl 1483.93035 · doi:10.1016/j.chaos.2019.07.027
[7] A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
[8] A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Methods Partial Differ. Equ., 34 (2018), 1502-1523. doi: 10.1002/num.22195. · Zbl 1417.65113 · doi:10.1002/num.22195
[9] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solit. Fractals, 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012. · Zbl 1360.34150 · doi:10.1016/j.chaos.2016.02.012
[10] P. Bedi, A. Kumar and A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Solit. Fractals, 150 (2021), Art. No. 111153. doi: 10.1016/j.chaos.2021.111153. · Zbl 1498.34018 · doi:10.1016/j.chaos.2021.111153
[11] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85.
[12] P. Chen, X. Zhang and Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calc. Appl. Anal., 23 (2020), 268-291. doi: 10.1515/fca-2020-0011. · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[13] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[14] K. Dhanalakshmi and P. Balasubramaniam, Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process, Stoch. Anal. Appl., 38 (2020), 352-372. doi: 10.1080/07362994.2019.1695630. · Zbl 1440.60049 · doi:10.1080/07362994.2019.1695630
[15] R. Dhayal, J. F. Gómez-Aguilar and G. Fernández-Anaya, Optimal controls for fractional stochastic differential systems driven by Rosenblatt process with impulses, Optim. Control Appl. Methods, 43 (2022), 386-401. doi: 10.1002/oca.2805. · Zbl 1531.93425 · doi:10.1002/oca.2805
[16] R. Dhayal and M. Malik, Existence and controllability of impulsive fractional stochastic differential equations driven by Rosenblatt process with Poisson jumps, J. Eng. Math., 130 (2021), Art. No. 11. doi: 10.1007/s10665-021-10167-7. · Zbl 1490.60152 · doi:10.1007/s10665-021-10167-7
[17] R. Dhayal, M. Malik and S. Abbas, Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous impulses and Poisson jumps, Asian J. Control, 23 (2021), 2669-2680. doi: 10.1002/asjc.2389. · Zbl 07886918 · doi:10.1002/asjc.2389
[18] R. Dhayal, M. Malik, S. Abbas and A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Methods Appl. Sci., 43 (2020), 4107-4124. doi: 10.1002/mma.6177. · Zbl 1448.49034 · doi:10.1002/mma.6177
[19] R. Dhayal, M. Malik and Q. Zhu, Optimal controls of impulsive fractional stochastic differential systems driven by Rosenblatt process with state-dependent delay, Asian J. Control, 26 (2024), 162-174. · Zbl 07892453
[20] M. Dieye, M. A. Diop and K. Ezzinbi, Necessary conditions of optimality for some stochastic integro-differential equations of neutral type on Hilbert spaces, Appl. Math. Optim., 77 (2018), 343-375. doi: 10.1007/s00245-016-9377-x. · Zbl 1394.49023 · doi:10.1007/s00245-016-9377-x
[21] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A. Shukla and K. S. Nisar, A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order \(r \in(1, 2)\) with delay, Chaos Solit. Fractals, 153 (2021), Paper No. 111565, 16 pp. doi: 10.1016/j.chaos.2021.111565. · Zbl 1498.34210 · doi:10.1016/j.chaos.2021.111565
[22] E. Hernández and D. O’Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641-1649. doi: 10.1090/S0002-9939-2012-11613-2. · Zbl 1266.34101 · doi:10.1090/S0002-9939-2012-11613-2
[23] A. Kumar and D. N. Pandey, Existence of mild solution of Atangana-Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions, Chaos Solit. Fractals, 132 (2020), Art. No. 109551. doi: 10.1016/j.chaos.2019.109551. · Zbl 1434.34069 · doi:10.1016/j.chaos.2019.109551
[24] X. Li, X. Liu and M. Tang, Approximate controllability of fractional evolution inclusions with damping, Chaos Solit. Fractals, 148 (2021), Paper No. 111073, 13 pp. doi: 10.1016/j.chaos.2021.111073. · Zbl 1485.93072 · doi:10.1016/j.chaos.2021.111073
[25] C. Louis-Rose and M. Warma, Approximate controllability from the exterior of space-time fractional wave equations, Appl. Math. Optim., 83 (2021), 207-250. doi: 10.1007/s00245-018-9530-9. · Zbl 1461.93036 · doi:10.1007/s00245-018-9530-9
[26] M. Maejima and C. A Tudor, On the distribution of the Rosenblatt process, Stat. Probab. Lett., 83 (2013), 1490-1495. doi: 10.1016/j.spl.2013.02.019. · Zbl 1287.60024 · doi:10.1016/j.spl.2013.02.019
[27] M. Mallika Arjunan, T. Abdeljawad, V. Kavitha and A. Yousef, On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses, Chaos Solit. Fractals, 148 (2021), Art. No. 111075. doi: 10.1016/j.chaos.2021.111075. · Zbl 1485.34152 · doi:10.1016/j.chaos.2021.111075
[28] L. Peng and Y. Zhou, The analysis of approximate controllability for distributed order fractional diffusion problems, Appl. Math. Optim., 86 (2022), Paper No. 22, 28 pp. doi: 10.1007/s00245-022-09886-9. · Zbl 1503.35272 · doi:10.1007/s00245-022-09886-9
[29] R. Sakthivel, P. Ganesh, Y. Ren and S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3498-3508. doi: 10.1016/j.cnsns.2013.05.015. · Zbl 1344.93019 · doi:10.1016/j.cnsns.2013.05.015
[30] R. Sakthivel, Y. Ren, A. Debbouche and N. I. Mahmudov, Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382. doi: 10.1080/00036811.2015.1090562. · Zbl 1350.93018 · doi:10.1080/00036811.2015.1090562
[31] R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Bound. Value Probl., 81 (2013), 70-86. doi: 10.1016/j.na.2012.10.009. · Zbl 1261.34063 · doi:10.1016/j.na.2012.10.009
[32] R. Sakthivel, P. Revathi, Y. Ren and G. Shen, Retarded stochastic differential equations with infinite delay driven by Rosenblatt process, Stoch. Anal. Appl., 36 (2018), 304-323. doi: 10.1080/07362994.2017.1399801. · Zbl 1392.60054 · doi:10.1080/07362994.2017.1399801
[33] T. Sathiyaraj, J. Wang and P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optim., 84 (2021), 2527-2554. doi: 10.1007/s00245-020-09716-w. · Zbl 1472.93016 · doi:10.1007/s00245-020-09716-w
[34] G. Shen and Y. Ren, Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space, J. Korean Stat. Soc., 44 (2015), 123-133. doi: 10.1016/j.jkss.2014.06.002. · Zbl 1311.60073 · doi:10.1016/j.jkss.2014.06.002
[35] X. Su and X. Fu, Approximate controllability of second-order stochastic differential systems driven by a Lévy process, Appl. Math. Optim., 83 (2021), 1053-1079. doi: 10.1007/s00245-019-09578-x. · Zbl 1465.34086 · doi:10.1007/s00245-019-09578-x
[36] C. A. Tudor, Analysis of the Rosenblatt process, ESAIM - Probab. Stat., 12 (2008), 230-257. doi: 10.1051/ps:2007037. · Zbl 1187.60028 · doi:10.1051/ps:2007037
[37] T. Vinh An, H. Vu and N. Van Hoa, Finite-time stability of fractional delay differential equations involving the generalized Caputo fractional derivative with non-instantaneous impulses, Math. Methods Appl. Sci., 45 (2022), 4938-4955. doi: 10.1002/mma.8084. · Zbl 1539.34083 · doi:10.1002/mma.8084
[38] J. Wang and M. Fečkan, A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., 46 (2015), 915-933. · Zbl 1381.34081
[39] H. Xiao and Q. Zhu, Stability analysis of switched stochastic delay system with unstable subsystems, Nonlinear Anal.: Hybrid Syst., 42 (2021), Art. No. 101075. doi: 10.1016/j.nahs.2021.101075. · Zbl 1478.93725 · doi:10.1016/j.nahs.2021.101075
[40] Z. Yan, Time optimal control of a Clarke subdifferential type stochastic evolution inclusion in Hilbert spaces, Appl. Math. Optim., 84 (2021), 3083-3110. doi: 10.1007/s00245-020-09740-w. · Zbl 1480.49010 · doi:10.1007/s00245-020-09740-w
[41] P. Yang, J. Wang and M. Fečkan, Boundedness, periodicity, and conditional stability of non-instantaneous impulsive evolution equations, Math. Methods Appl. Sci., 43 (2020), 5905-5926. doi: 10.1002/mma.6332. · Zbl 1458.34111 · doi:10.1002/mma.6332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.