×

Existence and global asymptotic behavior of \(S\)-asymptotically periodic solutions for fractional evolution equation with delay. (English) Zbl 1535.34063

The authors study the existence and global asymptotic behavior of \(S\)-asymptotically periodic solutions for fractional evolution equation with delay (FDEE) in \(X\): \[ \begin{cases} ^{c}D_{t}^{q}u(t)+Au(t)=F(t,u(t),u_{t}), \quad t\geq0,\\ u(t)=\varphi(t),\quad t\in [-r,0], \end{cases}\tag{1} \] where \(^{c}D_{t}^{q}\) is the Caputo fractional derivation of order \(q\in(0,1)\), \(X\) is a real Banach space, \(A:D(A)\subset X\rightarrow X\) be a closed linear operator and \(-A\) generate a \(C_{0}\)-semigroup \(T(t)(t\geq0)\) in \(X\). Let \(\mathcal{B}:=C([-r,0],X)\) denote the space of continuous functions from \([-r,0]\) into \(X\) provided with the uniform norm \(\|\phi\|_{\mathcal{B}}=\sup\limits_{s\in[-r,0]}\|\phi(s)\|\). The function \(F:\mathbb{R}^{+}\times X\times \mathcal{B}\to X\) is continuous, \(\varphi\in \mathcal{B}\).
The study of this problem is very meaningful. Firstly, by introducing a new noncompact measure theory involving infinite interval, they obtain the existence of \(S\)-asymptotically periodic mild solutions for FDEE (1) under the assumption that the semigroup generated by \(-A\) is noncompact and the nonlinear term \(F\) satisfies more general growth conditions instead of Lipschitz-type conditions. Secondly, by establishing a new Gronwall-type integral inequality corresponding to fractional differential equation with delay, they obtain that the global asymptotic stability of \(S\)-asymptotically periodic mild solutions and global asymptotic periodicity for the FDEE (1). Finally, an example is provided in support of the obtained results.

MSC:

34K30 Functional-differential equations in abstract spaces
34K37 Functional-differential equations with fractional derivatives
34K13 Periodic solutions to functional-differential equations
34K38 Functional-differential inequalities
34K25 Asymptotic theory of functional-differential equations

References:

[1] O. Agrawal, J. Sabatier, J. Tenreiro, Advances in Fractional Calculus, Springer, Dordrecht, 2007, https://doi.org/10.1007/978-1-4020-6042-7. · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[2] H. Amann, Nonlinear operators in ordered Banach spaces and some applicitions to nonlinear boundary value problem, in Nonlinear Operators and the Calculus of Variations, Lect. Notes Math., Vol. 543, Springer, Berlin, Heidelberg, 1976, pp. 1-55, https://doi.org/10. 1007/BFb0079941. · doi:10.1007/BFb0079941
[3] H. Amann, Periodic solutions of semilinear parabolic equations, in Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, Academic Press, New York, 1978, pp. 1-29, https://doi.org/10.1016/B978-0-12-165550-1.50007-0. · Zbl 0464.35050 · doi:10.1016/B978-0-12-165550-1.50007-0
[4] C.T. Anh, T.D. Ke, On nonlocal problems for retarded fractional differential equations in Banach spaces, Fixed Point Theory, 15(2):373-392, 2014. · Zbl 1307.34120
[5] J. Banaś, K. Goebel, Measure of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math., Vol. 60, Marcel Dekker, New York, 1980. · Zbl 0441.47056
[6] K.V. Bockstal, M. Zaky, A. Hendy, On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay, Commun. Nonlinear Sci. Numer. Simul., 115:106755, 2022, https://doi.org/10.1016/j.cnsns.2022. 106755. · Zbl 1496.65143 · doi:10.1016/j.cnsns.2022.106755
[7] P. Chen, Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65:711-728, 2014, https://doi. org/10.1007/s00033-013-0351-z. · Zbl 1304.34006 · doi:10.1007/s00033-013-0351-z
[8] P. Chen, X. Zhang, Y. Li, Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14:559-584, 2020, https://doi.org/10.1007/s43037-019-00008-2. · Zbl 1452.35236 · doi:10.1007/s43037-019-00008-2
[9] P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calc. Appl. Anal., 23:268-291, 2020, https://doi.org/10.1515/fca-2020-0011. · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[10] X. Chen, L. Cheng, On countable determination of the Kuratowski measure of noncompactness, J. Math. Anal. Appl., 504:125370, 2021, https://doi.org/10.1016/ j.jmaa.2021.125370. · Zbl 1501.47092 · doi:10.1016/j.jmaa.2021.125370
[11] Z. Chen, B. Wang, Existence, exponential mixing and convergence of periodic measures of fractional stochastic delay reaction-diffusion equations on R n , J. Differ. Equations, 336:505-564, 2022, https://doi.org/10.1016/j.jde.2022.07.026. · Zbl 1510.37116 · doi:10.1016/j.jde.2022.07.026
[12] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Heidelberg, 1985, https: //doi.org/10.1007/978-3-662-00547-7. · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[13] H. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., Theory Methods Appl., 7:1351-1371, 1983, https://doi.org/10.1016/0362-546X(83)90006-8. · Zbl 0528.47046 · doi:10.1016/0362-546X(83)90006-8
[14] H. Henríquez, M. Pierri, P. Táboas, On s-asymptotically ω-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343:1119-1130, 2008, https://doi.org/ 10.1016/j.jmaa.2008.02.023. · Zbl 1146.43004 · doi:10.1016/j.jmaa.2008.02.023
[15] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., Elsevier, Amsterdam, 2006, https://doi.org/ 10.1016/S0304-0208(06)80001-0. · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[16] F. Li, H. Wang, s-asymptotically ω-periodic mild solutions of neutral fractional differential equations with finite delay in Banach space, Mediterr. J. Math., 14:16pp, 2017, https: //doi.org/10.1007/s00009-017-0855-4. · Zbl 1368.34096 · doi:10.1007/s00009-017-0855-4
[17] Q. Li, L. Liu, M. Wei, s-asymptotically periodic solutions for time-space fractional evolution equation, Mediterr. J. Math., 18:126, 2021, https://doi.org/10.1007/s00009-021-01770-0. · Zbl 1470.34159 · doi:10.1007/s00009-021-01770-0
[18] Q. Li, G. Wang, M. Wei, Monotone iterative technique for time-space fractional diffusion equations involving delay, Nonlinear Anal. Model. Control, 26(2):241-258, 2021, https: //doi.org/10.15388/namc.2021.26.21656. · Zbl 1466.35361 · doi:10.15388/namc.2021.26.21656
[19] Q. Li, M. Wei, Monotone iterative technique for s-asymptotically periodic problem of fractional evolution equation with finite delay in ordered banach space, J. Math. Inequal., 15: 521-546, 2021, https://doi.org/10.7153/jmi-2021-15-39. · Zbl 1471.34143 · doi:10.7153/jmi-2021-15-39
[20] Y. Li, Y. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differential Equations, 266:3514-3558, 2019, https://doi.org/10.1016/j.jde.2018.09.009. · Zbl 1406.35469 · doi:10.1016/j.jde.2018.09.009
[21] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1993, https://doi.org/10.1007/978-1-4612-5561-1. · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[22] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999. · Zbl 0918.34010
[23] M.M. Raja, V. Vijayakumar, R. Udhayakumar, Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness, Chaos Solitons Fractals, 139:110299, 2020, https://doi.org/10.1016/j.chaos. 2020.110299. · Zbl 1490.34093 · doi:10.1016/j.chaos.2020.110299
[24] L. Ren, J. Wang, M. Fečkan, Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21:1294-1312, 2018, https://doi.org/ 10.1515/fca-2018-0068. · Zbl 1426.34020 · doi:10.1515/fca-2018-0068
[25] X. Shu, F. Xu, Y. Shi, s-asymptotically ω-positive periodic solutions for a class of neutral fractional differential equations, Appl. Math. Comput., 270:768-776, 2015, https://doi. org/10.1016/j.amc.2015.08.080. · Zbl 1410.34203 · doi:10.1016/j.amc.2015.08.080
[26] I. Vrabie, C0-Semigroups and Applications, North-Holland Math. Stud., Vol. 191, Elsevier, Amsterdam, 2003. · Zbl 1119.47044
[27] R. Wang, D. Chen, T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equations, 252:202-235, 2012, https://doi.org/10.1016/j. jde.2011.08.048. · Zbl 1238.34015 · doi:10.1016/j.jde.2011.08.048
[28] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, Amsterdam, 2016, https://doi.org/10.1016/C2015-0-00813-9. · Zbl 1343.34001 · doi:10.1016/C2015-0-00813-9
[29] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59:1063-1077, 2010, https://doi.org/10.1016/j.camwa.2009. 06.026. · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.