×

Monotone iterative technique for \(S\)-asymptotically periodic problem of fractional evolution equation with finite delay in ordered Banach space. (English) Zbl 1471.34143

In this article, authors consider a fractional evolution equation with delay in ordered Banach space. The fractional derivative is taken in the sense of Caputo. The main aim is to establish the existence of S-asymptotically periodic solution. The main technique used is the concept of monotone iteration. This technique of upper and lower solution is a quite powerful method to obtain the solution. It also provides an iterative method for the solution. The monotone sequences of the lower and upper approximate solutions converge to the minimal and maximal solutions between the lower and upper solutions. The existence of minimal and maximal solutions have been shown by the authors. At the end, examples are also given for illustration.
Reviewer: Syed Abbas (Mandi)

MSC:

34K30 Functional-differential equations in abstract spaces
34K37 Functional-differential equations with fractional derivatives
34K07 Theoretical approximation of solutions to functional-differential equations
34K13 Periodic solutions to functional-differential equations
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
Full Text: DOI

References:

[1] O. AGRAWAL, J. SABATIER, J. TENREIRO,Advances in fractional calculus, Springer, Dordrecht, 2007. · Zbl 1116.00014
[2] H. AMANN,Nonlinear operators in ordered Banach spaces and some applicitions to nonlinear boundary value problem, In: Nonlinear operators and the Calculus of Variations, Lecture Notes in Mathmematics, Springer-Verlag, Berlin and New YorK, 1976, pp. 1-55. · Zbl 0333.47023
[3] H. AMANN,Periodic solutions of semilinear parabolic equations, In: L. Cesari, R. Kannan, R. Weinberger (Eds.), Nonlinear Anal., A Collection of Papers in Honor of Erich H. Rothe, New York: Academic Press, 1978: 1-29. · Zbl 0464.35050
[4] E. BAZHLEKOVA,The abstract Cauchy problem for the fractional evolution equation, Fract. Calc. Appl. Anal., 1 (1998), 255-270. · Zbl 1041.34043
[5] J. BANAS, K. GOEBEL,Measure of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math., vol. 60, New York: Marcel Dekker, 1980. · Zbl 0441.47056
[6] J. BANASIAK, L. ARLOTTI,Perturbations of Positive Semigroups with Applications, London: Springer-Verlag, 2006. · Zbl 1097.47038
[7] Y. K. CHANG, V. KAVITHA, M. MALLIKAARJUNAN,Existence and uniqueness of mild solutions to a semilinear integro-differential equations of fractional order, Nonlinear Anal., 71 (2009), 5551-5559. · Zbl 1179.45010
[8] P. CHEN, Y. LI,Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728. · Zbl 1304.34006
[9] P. CHEN, Y. LI, Q. LI,Existence of mild solutions for fractional evolution equations with nonlocal initial conditions, Ann. Polon. Math., 110 (2014), 13-24. · Zbl 1293.34009
[10] P. CHEN, Y. LI,Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 74 (2011), 3578-3588. · Zbl 1220.34018
[11] P. CHEN, Y. LI,Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744. · Zbl 1279.34072
[12] P. CHEN, Y. LI, H. YANG,Perturbation method for nonlocal impulsive evolution equations, Nonlinear Anal. Hybrid Syst., 8 (2013), 22-30. · Zbl 1257.93034
[13] P. CHEN, X. ZHANG, Y. LI,Iterative method for a new class of evolution equations with noninstantaneous impulses,Taiwanese J. Math., 21 (2017), 913-942. · Zbl 1390.34189
[14] P. CHEN, X. ZHANG, Y. LI,Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ. Oper. Appl., 10 (2019), 955-973. · Zbl 1427.34006
[15] P. CHEN, X. ZHANG, Y. LI,Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calcu. Appl. Anal., 23 (2020), 268-291. · Zbl 1441.34006
[16] P. CHEN, X. ZHANG, Y. LI,Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14 (2020): 559-584. · Zbl 1452.35236
[17] C. CUEVAS, J. SOUZA,Existence of S -asymptoticallyω-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683-1689. · Zbl 1197.47063
[18] C. CUEVAS, H. R. HENR´IQUEZ, H. SOTO,Asymptotically periodic solutions of fractional differential equations, Appl. Math. Comput., 236 (2014), 524-545. · Zbl 1334.34173
[19] K. DEIMLING,Nonlinear Functional Analysis, New York: Springer-Verlag, 1985. · Zbl 0559.47040
[20] T. DIAGANA, G. M. MOPHOU, G. M. N’GUER‘EKATA‘,On the existence of mild solutions to some fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., 58, (2010), 1-17. · Zbl 1211.34094
[21] Y. DU,Fixed points of increasing operators in Banach spaces and applications, Appl. Anal., 38 (1990), 1-20. · Zbl 0671.47054
[22] S. DU, V. LAKSHMIKANTHAM,Monotone iterative technique for differential equations in Banach spaces, J. Math. Anal. Appl., 87 (1982), 454-459. · Zbl 0523.34057
[23] M. M. EI-BORAI,Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 14 (2002), 433-440. · Zbl 1005.34051
[24] D. GUO, J. SUN,Ordinary Differential Equations in Abstract Spaces, Jinan: Shandong Science and Technology, 1989 (in Chinese).
[25] D. GUO, X. LIU,Extremal solutions for a boundary value problem of n th-order impulsive integrodifferential equations in a Banach space, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13 (2006), 599-619. · Zbl 1113.45017
[26] H. P. HEINZ,On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371. · Zbl 0528.47046
[27] H. R. HENR´IQUEZ, M. PIERRI,ANDP. T ´ABOAS,On S -asymptoticallyω-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119-1130. · Zbl 1146.43004
[28] T. KE, N. LOI, V. OBUKHOVSKII,Decay solutions for a class of reactional differential variational inequalities, Fract. Calc. Appl. Anal., 18 (2015), 531-553. · Zbl 1319.49012
[29] A. KILBAS, H. SRIVASTAVA, J. TRUJILLO,Theory and Applications of Fractional Differential Equations, Elsevier Science BV, (2006). · Zbl 1092.45003
[30] A. A KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO,Theory and applications of fractional differential equations, In: van Mill, J. (ed.) North-Holland Mathematics Studies, vol. 204. Elsevier Science B. V., Amsterdam 2006. · Zbl 1092.45003
[31] I. KIM, K. KIM, S. LIM,An Lq(lp)-theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306 (2017), 123-176. · Zbl 1361.35196
[32] B. LI, H. GOU,Monotone iterative method for the periodic boundary value problems of impulsive evolution equations in Banach spaces, Chaos Solitons Fractals, 110 (2018), 209-215. · Zbl 1391.34125
[33] F. LI, J. LIANG, H. WANG,S -asymptoticallyω-periodic solution for fractional differential equations of order q∈(0,1)withfinite delay, Adv. Difference Equ., 2017, Paper No. 83, 14 pp. · Zbl 1422.34045
[34] F. LI, H. WANG,S -asymptoticallyω-periodic mild solutions of neutral fractional differential equations withfinite delay in Banach space, Mediterr. J. Math., 14 (2017), 57. · Zbl 1368.34096
[35] Y. LI,The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin., 39 (1996), 666-672 (in Chinese). · Zbl 0870.47040
[36] Y. LI,Periodic solutions of semilinear evolution equations in Banach spaces, Acta Math. Sin., 41 (1998), 629-636 (in Chinese). · Zbl 1027.34067
[37] Y. LI,Positive periodic solutions offirst and second order ordinary differential equations, Chin. Ann. Math., 25 (2004), 413-420. · Zbl 1073.34041
[38] Q. LI, Y. LI,Monotone iterative technique for second order delayed periodic problem in Banach spaces, Appl. Math. Comput., 270 (2015), 654-664. · Zbl 1410.34201
[39] Q. LI, Y. LI, P. CHEN,Existence and uniqueness of periodic solutions for parabolic equation with nonlocal delay, Kodai Math. J., 39 (2016), 276-289. · Zbl 1388.35081
[40] R. NAGEL,One-parameter Semigroups of Positive Operators, Lecture Notes in Math. vol. 1184, Berlin: Springer-Verlag, 1986. · Zbl 0585.47030
[41] A. PAZY,Semigroup of linear operators and applications to partial differential equations, SpringerVerlag, New York, 1993. · Zbl 0785.58003
[42] M. PIERRI,On S -asymptoticallyω-periodic functions and applications, Nonlinear Anal., 75 (2012), 651-661. · Zbl 1232.45016
[43] I. PODLUBNY,Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[44] L. REN, J. WANG, M. FECKANˇ,Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21 (2018), 1294-1312. · Zbl 1426.34020
[45] W. RUESS, W, SUMMERS,Operator semigroups for functional differential equations with delay, Trans. Amer. Math. Soc., 341 (1994), 695-719. · Zbl 0794.34067
[46] J. SUN, Z. ZHAO,Extremal solutions of initial value problem for integro-differential equations of mixed type in Banach spaces, Ann. Differ. Equations, 8 (1992), 469-475. · Zbl 0771.34059
[47] R. WANG, D. CHEN, T. XIAO,Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252 (2012), 202-235. · Zbl 1238.34015
[48] J. WANG, Y. ZHOU,A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 263-272. · Zbl 1214.34010
[49] H. YE, J. GAO, Y. DING,A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. · Zbl 1120.26003
[50] Y. ZHOU, F. JIAO,Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077. · Zbl 1189.34154
[51] Y. ZHOU,Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. · Zbl 1336.34001
[52] Y. ZHOU,Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, Academic Press, 2016 · Zbl 1343.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.