×

A high-order scheme for time-space fractional diffusion equations with Caputo-Riesz derivatives. (English) Zbl 1524.65392

Summary: In this paper, we present a high-order approach for solving one- and two-dimensional time-space fractional diffusion equations (FDEs) with Caputo-Riesz derivatives. To design the scheme, the Caputo temporal derivative is approximated using a high-order method, and the spatial Riesz derivative is discretized by the second-order weighted and shifted Grünwald difference (WSGD) method. It is proved that the scheme is unconditionally stable and convergent with the order of \(O(\tau^\alpha h^2+\tau^4)\), where \(\tau\) and \(h\) are time and space step sizes, respectively. We illustrate the accuracy and effectiveness of the method by providing several numerical examples.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Guo, X.; Xu, M., Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47, 8, Article 082104 pp. (2006) · Zbl 1112.81028
[2] Wang, S.; Xu, M., Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys., 48, 4, Article 043502 pp. (2007) · Zbl 1137.81328
[3] Rihan, F. A., Numerical Modeling of Fractional-Order Biological Systems, Abstract and Applied Analysis, vol. 2013 (2013), Hindawi · Zbl 1470.65131
[4] Atangana, A.; Vermeulen, P., Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation, Abstract and Applied Analysis, vol. 2014 (2014), Hindawi · Zbl 1468.35225
[5] Machado, J. T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1140-1153 (2011) · Zbl 1221.26002
[6] Chen, P.; Zhang, X.; Li, Y., A blowup alternative result for fractional non-autonomous evolution equation of Voltera type, Commun. Pure Appl. Anal., 17, 5, 1975-1992 (2018) · Zbl 1397.35331
[7] Chen, P.; Zhang, X.; Li, Y., Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14, 2, 559-584 (2020) · Zbl 1452.35236
[8] Chen, P.; Li, Y.; Zhang, X., Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst., Ser. B, 26, 3, 1531-1547 (2021) · Zbl 1469.34082
[9] Chen, P.; Zhang, X.; Li, Y., Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calc. Appl. Anal., 23, 1, 268-291 (2020) · Zbl 1441.34006
[10] Chen, P.; Zhang, X.; Li, Y., Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Syst., 26, 1, 1-16 (2020) · Zbl 1439.34065
[11] Saichev, A. I.; Zaslavsky, G. M., Fractional kinetic equations: solutions and applications, Chaos, Interdiscip. J. Nonlinear Sci., 7, 4, 753-764 (1997) · Zbl 0933.37029
[12] Scalasa, E.; Goren, R.; Mainardi, F., Fractional calculus and continuous-time finance, Physica A, 284, 1, 376-384 (2000)
[13] Jiang, Y.; Ma, J., High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235, 11, 3285-3290 (2011) · Zbl 1216.65130
[14] Fan, W.; Liu, F., A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain, Appl. Math. Lett., 77, 114-121 (2018) · Zbl 1380.65260
[15] Jin, B.; Lazarov, R.; Liu, Y.; Zhou, Z., The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281, 825-843 (2015) · Zbl 1352.65350
[16] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62, 5, 2364-2373 (2011) · Zbl 1231.65126
[17] Kamrani, M.; Hosseini, S. M., Spectral collocation method for stochastic Burgers equation driven by additive noise, Math. Comput. Simul., 82, 9, 1630-1644 (2012) · Zbl 1264.60044
[18] Hou, T.; Tang, T.; Yang, J., Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 72, 3, 1214-1231 (2017) · Zbl 1379.65063
[19] Hao, Z.; Cao, W., An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution, J. Sci. Comput., 73, 1, 395-415 (2017) · Zbl 1377.26009
[20] Wang, H.; Du, N., Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations, J. Comput. Phys., 258, 305-318 (2014) · Zbl 1349.65342
[21] Zeng, F.; Li, C.; Liu, F.; Turner, I., Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 37, 1, A55-A78 (2015) · Zbl 1334.65162
[22] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191, 1, 12-20 (2007) · Zbl 1193.76093
[23] Vong, S.; Lyu, P.; Chen, X.; Lei, S.-L., High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algorithms, 72, 1, 195-210 (2016) · Zbl 1382.65259
[24] Çelik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 4, 1743-1750 (2012) · Zbl 1242.65157
[25] Bu, W.; Tang, Y.; Yang, J., Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276, 26-38 (2014) · Zbl 1349.65441
[26] Zhang, H.; Liu, F.; Jiang, X.; Zeng, F.; Turner, I., A Crank-Nicolson adi Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation, Comput. Math. Appl., 76, 10, 2460-2476 (2018) · Zbl 1442.65301
[27] Arshad, S.; Baleanu, D.; Huang, J.; Al Qurashi, M. M.; Tang, Y.; Zhao, Y., Finite difference method for time-space fractional advection-diffusion equations with Riesz derivative, Entropy, 20, 5, 321 (2018)
[28] Arshad, S.; Huang, J.; Khaliq, A. Q.; Tang, Y., Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative, J. Comput. Phys., 350, 1-15 (2017) · Zbl 1380.65141
[29] Feng, L.; Liu, F.; Turner, I.; Yang, Q.; Zhuang, P., Unstructured mesh finite difference/finite element method for the 2d time-space Riesz fractional diffusion equation on irregular convex domains, Appl. Math. Model., 59, 441-463 (2018) · Zbl 1480.65253
[30] Cheng, X.; Duan, J.; Li, D., A novel compact adi scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations, Appl. Math. Comput., 346, 452-464 (2019) · Zbl 1429.65216
[31] Hao, Z.-p.; Sun, Z.-z.; Cao, W.-r., A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281, 787-805 (2015) · Zbl 1352.65238
[32] Mokhtari, R.; Mostajeran, F., A high order formula to approximate the Caputo fractional derivative, Commun. Appl. Math. Comput., 2, 1, 1-29 (2020) · Zbl 1449.65195
[33] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1998), Elsevier · Zbl 0922.45001
[34] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore · Zbl 0865.65009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.