×

Semiglobal oblique projection exponential dynamical observers for nonautonomous semilinear parabolic-like equations. (English) Zbl 1478.93281

Summary: The estimation of the full state of a nonautonomous semilinear parabolic equation is achieved by a Luenberger-type dynamical observer. The estimation is derived from an output given by a finite number of average measurements of the state on small regions. The state estimate given by the observer converges exponentially to the real state, as time increases. The result is semiglobal in the sense that the error dynamics can be made stable for an arbitrary given initial condition, provided a large enough number of measurements, depending on the norm of the initial condition, are taken. The output injection operator is explicit and involves a suitable oblique projection. The results of numerical simulations are presented showing the exponential stability of the error dynamics.

MSC:

93C20 Control/observation systems governed by partial differential equations
35K58 Semilinear parabolic equations
93B53 Observers

References:

[1] Afshar, S., Morris, K., Khajepour, A.: State of charge estimation via extended Kalman filter designed for electrochemical equations. IFAC-PapersOnLine 50(1):2152-2157. In: 20th IFAC World Congress (2017). doi:10.1016/j.ifacol.2017.08.269
[2] Ahmed-Ali, T.; Giri, F.; Krstic, M.; Lamnabhi-Lagarrigue, F.; Burlion, L., Adaptive observer for a class of parabolic PDEs, IEEE Trans. Autom. Control, 61, 10, 3083-3090 (2016) · Zbl 1359.93201 · doi:10.1109/TAC.2015.2500237
[3] Ammari, K.; Duyckaerts, T.; Shirikyan, A., Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation, Math. Control Relat. Fields, 6, 1, 1-25 (2016) · Zbl 1331.35235 · doi:10.3934/mcrf.2016.6.1
[4] Antil, H.; Otárola, E.; Salgado, AJ, A space-time fractional optimal control problem: analysis and discretization, SIAM J. Control Optim., 54, 3, 1295-1328 (2016) · Zbl 1339.49003 · doi:10.1137/15M1014991
[5] Astrovskii, AI; Gaishun, IV, State estimation for linear time-varying observation systems, Differ. Equ., 55, 3, 363-373 (2019) · Zbl 1418.93256 · doi:10.1134/S0012266119030108
[6] Azmi, B.; Rodrigues, SS, Oblique projection local feedback stabilization of nonautonomous semilinear damped wave-like equations, J. Differ. Equ., 269, 7, 6163-6192 (2020) · Zbl 1443.93102 · doi:10.1016/j.jde.2020.04.033
[7] Azouani, A.; Olson, E.; Titi, ES, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24, 2, 277-304 (2014) · Zbl 1291.35168 · doi:10.1007/s00332-013-9189-y
[8] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Berlin: Springer, Berlin · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[9] Buchot, J-M; Raymond, J-P; Tiago, J., Coupling estimation and control for a two dimensional Burgers type equation, ESAIM Control Optim. Calc. Var., 21, 2, 535-560 (2015) · Zbl 1311.93032 · doi:10.1051/cocv/2014037
[10] Chen, P.; Zhang, X.; Li, Y., Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calc. Appl. Anal., 23, 1, 268-291 (2020) · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[11] Chipot, M.; Weissler, F., Some blowup results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20, 4, 886-907 (1989) · Zbl 0682.35010 · doi:10.1137/0520060
[12] Weinan, E., Dynamics of vortex liquids in Ginzburg-Landau theories with applications to superconductivity, Phys. Rev. B, 50, 1126-1135 (1994) · doi:10.1103/PhysRevB.50.1126
[13] Feng, H.; Guo, B-Z, New unknown input observer and output feedback stabilization for uncertain heat equation, Autom. J. IFAC, 86, 1-10 (2017) · Zbl 1375.93096 · doi:10.1016/j.automatica.2017.08.004
[14] Fisher, RA, The wave of advance of advantageous genes, Ann. Hum. Genet., 7, 4, 355-369 (1937) · JFM 63.1111.04 · doi:10.1111/j.1469-1809.1937.tb02153.x
[15] Fujii, N., Feedback stabilization of distributed parameter systems by a functional observer, SIAM J. Control Optim., 18, 2, 108-120 (1980) · Zbl 0428.93047 · doi:10.1137/0318009
[16] Grishakov, S.; Degtyarenko, PN; Degtyarenko, NN; Elesin, VF; Kruglov, VS, Time dependent Ginzburg-Landau equations for modeling vortices dynamics in type-II superconductors with defects under a transport current, Phys. Procedia, 36, 1206-1210 (2012) · doi:10.1016/j.phpro.2012.06.202
[17] Gugat, M., Tr \({\ddot{{\rm o}}}\) ltzsch, F.: Boundary feedback stabilization of the Schl \({\ddot{{\rm o}}}\) gl system. Autom. J. IFAC 51, 192-199 (2015). doi:10.1016/j.automatica.2014.10.106 · Zbl 1309.93121
[18] Jadachowski, L., Meurer, T., Kugi, A.: State estimation for parabolic PDEs with varying parameters on 3-dimensional spatial domains. In: Proceedings of the 18th World Congress IFAC, Milano, Italy, pp. 13338-13343 (2011). doi:10.3182/20110828-6-IT-1002.02964
[19] Jadachowski, L., Meurer, T., Kugi, A.: State estimation for parabolic PDEs with reactive-convective non-linearities. In: Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, pp. 1603-1608 (2013). doi:10.23919/ECC.2013.6669588
[20] Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z., Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer. Anal., 35, 2, 561-582 (2015) · Zbl 1321.65142 · doi:10.1093/imanum/dru018
[21] Jones, DA; Titi, ES, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42, 3, 875-887 (1993) · Zbl 0796.35128 · doi:10.1512/iumj.1993.42.42039
[22] Kalantarov, VK; Titi, ES, Global stabilization of the Navier-Stokes-Voight and damped wave equations by finite number of feedback controllers, Discret. Contin. Dyn. Syst. Ser. B, 23, 3, 1325-1345 (2018) · Zbl 1402.35043 · doi:10.3934/dcdsb.2018153
[23] Kalman, RE, A new approach in linear filtering and prediction problems, Trans. ASME J. Basic Eng., 82, 1, 35-45 (1960) · doi:10.1115/1.3662552
[24] Kalman, RE; Bucy, RS, New results in linear filtering and prediction theory, Trans. ASME J. Basic Eng., 83, 1, 95-108 (1961) · Zbl 07915244 · doi:10.1115/1.3658902
[25] Kang, W.; Fridman, E., Distributed stabilization of Korteweg-deVries-Burgers equation in the presence of input delay, Autom. J. IFAC, 100, 260-263 (2019) · Zbl 1411.93132 · doi:10.1016/j.automatica.2018.11.025
[26] Kunisch, K.; Rodrigues, SS, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25, 67 (2019) · Zbl 1436.93106 · doi:10.1051/cocv/2018054
[27] Kunisch, K.; Rodrigues, SS; Walter, D., Learning an optimal feedback operator semiglobally stabilizing semilinear parabolic equations, Appl. Math. Optim. (2021) · Zbl 1476.49048 · doi:10.1007/s00245-021-09769-5
[28] Lacey, AA, Diffusion models with blow-up, J. Comput. Appl. Math., 97, 1-2, 39-49 (1998) · Zbl 0926.35054 · doi:10.1016/S0377-0427(98)00105-8
[29] Li, C.; Li, Z., The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, J. Nonlinear Sci., 31, 80 (2021) · Zbl 1471.35302 · doi:10.1007/s00332-021-09736-y
[30] Luenberger, D., Observing the state of a linear system with observers of low dynamic order, IEEE Trans. Mil. Electron., 8, 2, 74-80 (1964) · doi:10.1109/TME.1964.4323124
[31] Luenberger, D., Observers for multivariable systems, IEEE Trans. Automat. Control, 11, 2, 190-197 (1966) · doi:10.1109/TAC.1966.1098323
[32] Luenberger, DG, An introduction to observers, IEEE Trans. Automat. Control, 16, 6, 596-602 (1971) · doi:10.1109/TAC.1971.1099826
[33] Lunasin, E.; Titi, ES, Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study, Evol. Equ. Control Theory, 6, 4, 535-557 (2017) · Zbl 1375.35256 · doi:10.3934/eect.2017027
[34] Meurer, T., On the extended Luenberger-type observer for semilinear distributed-parameter systems, IEEE Trans. Autom. Control, 58, 7, 1732-1743 (2013) · Zbl 1369.93105 · doi:10.1109/TAC.2013.2243312
[35] Meurer, T.; Kugi, A., Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness, Autom. J. IFAC, 45, 1182-1194 (2009) · Zbl 1162.93016 · doi:10.1016/j.automatica.2009.01.006
[36] Nečas, J., Direct Methods in the Theory of Elliptic Equations (2012), Berlin: Springer, Berlin · Zbl 1246.35005 · doi:10.1007/978-3-642-10455-8
[37] Olmos, D.; Shizgal, BD, A pseudospectral method of solution of of Fisher equation, J. Comput. Appl. Math., 193, 219-242 (2006) · Zbl 1092.65088 · doi:10.1016/j.cam.2005.06.028
[38] Olson, E.; Titi, ES, Determining modes for continuous data assimilation in 2D turbulence, J. Stat. Phys., 113, 5-6, 799-840 (2003) · Zbl 1137.76402 · doi:10.1023/A:1027312703252
[39] Orlov, Y.; Pisano, A.; Pilloni, A.; Usai, E., Output feedback stabilization of coupled reaction-diffusion processes with constant parameters, SIAM J. Control Optim., 55, 6, 4112-4155 (2017) · Zbl 1386.93224 · doi:10.1137/15M1034325
[40] Phan, D.; Rodrigues, SS, Gevrey regularity for Navier-Stokes equations under Lions boundary conditions, J. Funct. Anal., 272, 7, 2865-2898 (2017) · Zbl 1359.35135 · doi:10.1016/j.jfa.2017.01.014
[41] Ramdani, K.; Tucsnak, M.; Valein, J., Detectability and state estimation for linear age-structured population diffusion models, ESAIM: M2AN, 50, 6, 1731-1761 (2016) · Zbl 1353.92084 · doi:10.1051/m2an/2016002
[42] Rodrigues, SS, Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems, Evol. Equ. Control Theory, 9, 3, 635-672 (2020) · Zbl 1455.93169 · doi:10.3934/eect.2020027
[43] Rodrigues, S.S.: Oblique projection exponential dynamical observer for nonautonomous linear parabolic-like equations. SIAM J. Control Optim. 59(1), 464-488 (2021). doi:10.1137/19M1278934 · Zbl 1459.93074
[44] Rodrigues, S.S.: Oblique projection output-based feedback exponential stabilization of nonautonomous parabolic equations. Autom. J. IFAC 129, 109621 (2021). doi:10.1016/j.automatica.2021.109621 · Zbl 1478.93512
[45] SchlLogl, F.Z.: Chemical reaction models for non-equilibrium phase transitions. Physik 253, 147-161 (1972). doi:10.1007/BF01379769
[46] Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, number 66, 2nd ed. SIAM, Philadelphia (1995). doi:10.1137/1.9781611970050
[47] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence. Reprint of the 1984 edition (2001). https://bookstore.ams.org/chel-343-h. Accessed 12 July 2018 · Zbl 0981.35001
[48] Wu, MY, A note on stability of linear time-varying systems, IEEE Trans. Autom. Control, 19, 2, 162 (1974) · doi:10.1109/TAC.1974.1100529
[49] Zhang, X-W; Wu, H-N, Regularity and stability for the mathematical programming problem in Banach spaces, Switching state observer design for semilinear parabolic pde systems with mobile sensors, 357, 2, 1299-1317 (2020) · Zbl 1429.93130 · doi:10.1016/j.jfranklin.2019.11.028
[50] Zhuk, S.; Iftimie, OV; Epperlein, JP; Polyakok, A., Minimax sliding mode control design for linear evolution equations with noisy measurements and uncertain inputs, Syst. Control Lett., 147 (2021) · Zbl 1454.93048 · doi:10.1016/j.sysconle.2020.104830
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.