×

Kinetic solutions for nonlocal stochastic conservation laws. (English) Zbl 1498.60265

Summary: This work is devoted to examining the uniqueness and existence of kinetic solutions for a class of scalar conservation laws involving a nonlocal super-critical diffusion operator and a multiplicative noise. Our proof for uniqueness is based upon the analysis on double variables method and the existence is enabled by a parabolic approximation.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
37L55 Infinite-dimensional random dynamical systems; stochastic equations

References:

[1] N. Alibaud, Entropy formulation for fractal conservation laws. J. Evol. Equ. 7, No 1 (2007), 145-175. · Zbl 1116.35013
[2] C. Bauzet, G. Vallet and P. Wittbold, The Cauchy problem for a conservation law with a multiplicative stochastic perturbation. J. Hyperbolic Differential Equations9, No 4 (2012), 661-709. · Zbl 1263.35222
[3] C. Bauzet, G. Vallet and P. Wittbold, The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation. J. Funct. Anal. 266, No 4 (2014), 2503-2545. · Zbl 1292.35168
[4] I. Biswas and A. Majee, Stochastic conservation laws: weak-in-time formulation and strong entropy condition. J. Funct. Anal. 267, No 7 (2014), 2199-2252. · Zbl 1330.60079
[5] G.Q. Chen, Q. Ding and K.H. Karlsen, On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204, No 3 (2012), 707-743. · Zbl 1261.60062
[6] P. Chen, Y. Li, X. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Commun. Pure Appl. Anal. 14, No 5 (2015), 1817-1840. · Zbl 1322.34007
[7] P. Chen, X. Zhang and Y. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1507-1526; ; https://www.degruyter.com/journal/key/FCA/19/6/html. · Zbl 1353.35303 · doi:10.1515/fca-2016-0078
[8] P. Chen, X. Zhang and Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract. Calc. Appl. Anal. 23, No 1 (2020), 268-291; ; https://www.degruyter.com/journal/key/FCA/23/1/html. · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[9] P. Chen, X. Zhang, Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete Contin. Dyn. Syst. Ser. B (2020); . · Zbl 1466.35052 · doi:10.3934/dcdsb.2020290
[10] A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259, No 4 (2010), 1014-1042. · Zbl 1200.60050
[11] A. Debussche, M. Hofmanová and J. Vovelle, Degenerate parabolic stochastic partial differential equations: quasilinear case. Ann. Probab. 44, No 3 (2016), 1916-1955. · Zbl 1346.60094
[12] J. Droniou, Intégration et Espaces de Sobolev à Valeurs Vectorielles (2001); http://www-gm3.univ-mrs.fr/polys/.
[13] J. Droniou and C. Imbert, Fractal first-order partial differential equations. Arch. Ration. Mech. Anal. 182, No 2 (2006), 299-331. · Zbl 1111.35144
[14] J. Duan, An Introduction to Stochastic Dynamics. Cambridge University Press, New York, 2015. · Zbl 1359.60003
[15] J. Feng and D. Nualart, Stochastic scalar conservation laws. J. Funct. Anal. 255, No 2 (2008), 313-373. · Zbl 1154.60052
[16] J.U. Kim, On a stochastic scalar conservation law. Indiana Univ. Math. J. 52, No 1 (2003), 227-256. · Zbl 1037.60064
[17] P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7, No 1 (1994), 169-191. · Zbl 0820.35094
[18] G. Lv, J. Duan and H. Gao, Stochastic nonlocal conservation laws on whole space. Comput. Math. Appl. 77, No 7 (2019), 1945-1962. · Zbl 1442.60066
[19] G. Lv, J. Duan, H. Gao and J. Wu, On a stochastic nonlocal conservation law in a bounded domain. Bull. Sci. Math. 140, No 6 (2016), 718-746. · Zbl 1345.35132
[20] C. Olivera, Well-posedness of the non-local conservation law by stochastic perturbation. Manuscripta Math. 162, No 3-4 (2020), 367-387. · Zbl 1446.60049
[21] J. Sanchez-Ortiz, F. Ariza-Hernandez, M. Arciga-Alejandre and E. Garcia-Murcia, Stochastic diffusion equation with fractional Laplacian on the first quadrant. Fract. Calc. Appl. Anal. 22, No 3 (2019), 795-806; ; https://www.degruyter.com/journal/key/FCA/22/3/html. · Zbl 1426.35230 · doi:10.1515/fca-2019-0043
[22] M. Simon and C. Olivera, Non-local conservation law from stochastic particle systems. J. Dynam. Differential Equations30, No 4 (2018), 1661-1682. · Zbl 1427.60139
[23] D.W. Stroock, Diffusion processes associated with Lévy generators. Z. Wahr. Verw. Geb. 32, No 3 (1975), 209-244. · Zbl 0292.60122
[24] M.F. Shlesinger, G.M. Zaslavsky and U. Frisch, Lévy Flights and Related Topics in Physics. Lecture Notes in Phys. 450, Springer-Verlag, Berlin, 1995. · Zbl 0823.00016
[25] G. Vallet and P. Wittbold, On a stochastic first-order hyperbolic equation in a bounded domain. Infin. Dimens. Anal. Quantum Probab. 12, No 4 (2009), 1-39. · Zbl 1194.60042
[26] J. Wei, J. Duan and G. Lv, Kinetic solutions for nonlocal scalar conservation laws. SIAM J. Math. Anal. 50, No 2 (2018), 1521-1543. · Zbl 1390.35179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.