×

The \(e\)-positive mild solutions for impulsive evolution fractional differential equations with sectorial operator. (English) Zbl 07812182

Summary: In this paper, we investigate the existence of global \(e\)-positive mild solutions to the initial value problem for a nonlinear impulsive fractional evolution differential equation involving the theory of sectorial operators. To obtain the result, we used Kuratowski’s non-compactness measure theory, the Cauchy criterion and the Gronwall inequality.

MSC:

34G20 Nonlinear differential equations in abstract spaces
34A08 Fractional ordinary differential equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
34A47 Bifurcation (MSC1991)
Full Text: DOI

References:

[1] A. BABAEIA, B. P. MOGHADDAM, S. BANIHASHEMIA AND J. A. T. MACHADO, Numerical so-lution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations, Commun. Nonlinear Sci. Numer. Simul. 82 (2020): 104985. · Zbl 1452.65268
[2] D. D. BAINOV AND A. DISHLIEV, Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, Comp. Rend. Bulg. Sci., 42 (1989): 29-32. · Zbl 0691.92016
[3] D. D. BAINOV AND P. S. SIMENOV, Systems with Impulse Effect Stability Theory and Applications, Ellis Horwood Limited, Chichester, (1989). · Zbl 0683.34032
[4] I. BENEDETTI, V. OBUKHOVSKII AND V. TADDEI, Evolution fractional differential problems with impulses and nonlocal conditions, Disc. Cont. Dyn. Sys.-S. 13 (7) (2020): 1899. · Zbl 1445.34091
[5] P. CHEN, X. ZHANG AND Y. LI, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Frac. Calc. Appl. Anal. 23.1 (2020): 268-291. · Zbl 1441.34006
[6] P. CHEN, X. ZHANG AND Y. LI, Fractional non-autonomous evolution equation with nonlocal con-ditions, J. Pseudo-Differ. Oper. Appl. 10.4 (2019): 955-973. · Zbl 1427.34006
[7] X.-L. DING AND B. AHMAD, Analytical solutions to fractional evolution equations with almost sec-torial operators, Adv. Difference Equ. 2016.1 (2016): 1-25. · Zbl 1419.35204
[8] S. D. EIDELMAN AND A. N. KOCHUBEI, Cauchy problem for fractional diffusion equations, J. Diff. Equ. 199 (2) (2004): 211-255. · Zbl 1068.35037
[9] M. FE ČKAN, JINRONG WANG AND Y. ZHOU, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Diff. Equ. 8.4 (2011): 345-361. · Zbl 1264.34014
[10] E. HERN ÁNDEZ, DONAL O’REGAN AND K. BALACHANDRAN, Existence results for abstract frac-tional differential equations with nonlocal conditions via resolvent operators, Indagationes Mathemat-icae 24.1 (2013): 68-82. · Zbl 1254.34011
[11] E. HERN ÁNDEZ, DONAL O’REGAN AND K. BALACHANDRAN, On recent developments in the the-ory of abstract differential equations with fractional derivatives, Nonlinear Analysis: Theory, Methods & Applications 73.10 (2010): 3462-3471. · Zbl 1229.34004
[12] M. HORANI, M. FABRIZIO, A. FAVINI AND H. TANABE, Fractional Cauchy problems and applica-tions, Disc. Cont. Dyn. Sys.-S. 13.8 (2020): 2259. · Zbl 1457.34006
[13] L. N. HUYNH, Y. ZHOU, D. O’REGAN AND N. H. TUAN, Fractional Landweber method for an initial inverse problem for time-fractional wave equations, Applicable Anal. (2019): 1-19.
[14] G. JIANG, Q. LU, Impulsive state feedback control of a predator-prey model, J. Comput. Appl. Math., 200 (2007): 193-207. · Zbl 1134.49024
[15] C. LIZAMA AND GASTON M. N’GU ÉR ÉKATA, Mild solutions for abstract fractional differential equations, Applicable Anal. 92.8 (2013): 1731-1754. · Zbl 1276.34004
[16] J. A. T. MACHADO AND A. M. LOPES, Fractional-order kinematic analysis of biomechanical in-spired manipulators, J. Vibration Control 26.1-2 (2020): 102-111.
[17] S. NENOV, Impulsive controllability and optimization problems in population dynamics, Nonl. Anal., 36 (1999), 881-890. · Zbl 0941.49021
[18] MANUEL D. ORTIGUEIRA AND J. A. T. MACHADO, On the properties of some operators under the perspective of fractional system theory, Commun. Nonlinear Sci. Numer. Simul. 82 (2020): 105022. · Zbl 1468.34012
[19] J. VANTERLER DA C. SOUSA, L. A. MAGNA AND E. CAPELAS DE OLIVEIRA, Fractional calculus and the ESR test, AIMS Math. 2.4 (2017): 692-705. · Zbl 1427.35313
[20] J. VANTERLER DA C. SOUSA, L. A. MAGNA, MAGUN N. N. DOS SANTOS AND E. CAPELAS DE OLIVEIRA, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math. 37.5 (2018): 6903-6919. · Zbl 1438.92033
[21] J. VANTERLER DA C. SOUSA, T. ABDELJAWAD AND D. S. OLIVEIRA, Mild and classical solutions for fractional evolution differential equation, Palestine J. Math. 11 (2) (2022): 229-242. · Zbl 1514.34131
[22] J. VANTERLER DA C. SOUSA, D. S. OLIVEIRA, AND E. CAPELAS DE OLIVEIRA, A note on the mild solutions of Hilfer impulsive fractional differential equations, Chaos, Solitons & Fractals. 147 (2021): 110944. · Zbl 1486.34116
[23] J. VANTERLER DA C. SOUSA, FAHD JARAD, AND THABET ABDELJAWAD, Existence of mild so-lutions to Hilfer fractional evolution equations in Banach space, Annals Funct. Anal. 12.1 (2021): 1-16. · Zbl 1458.34032
[24] J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, On the Ψ -fractional integral and applications, Comput. Appl. Math. 38.1 (2019): 4. · Zbl 1463.26016
[25] J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, Fractional order pseudoparabolic partial differential equation: Ulam-Hyers stability, Bull. Braz. Math. Soc., New Series 50.2 (2019): 481-496. · Zbl 1415.35284
[26] J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, A Gronwall inequality and the Cauchy-type problem by means of ψ -Hilfer operator, Diff. Equ. Appl. 11 (2019): 87-106. · Zbl 1427.34017
[27] J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, Leibniz type rule: ψ -Hilfer frac-tional operator, Commun. Nonlinear Sci. Numer. Simul. 77 (2019): 305-311. · Zbl 1477.26012
[28] J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett. 81 (2018): 50-56. · Zbl 1475.45020
[29] J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ -Hilfer operator, J. Fixed Point Theory Appl. 20.3 (2018): 96. · Zbl 1398.34023
[30] J. VANTERLER DA C. SOUSA, KISHOR D. KUCCHE AND E. CAPELAS DE OLIVEIRA, Stability of ψ -Hilfer impulsive fractional differential equations, Appl. Math. Lett. 88 (2019): 73-80. · Zbl 1408.34006
[31] J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, On the ψ -Hilfer fractional deriva-tive, Commun. Nonlinear Sci. Numer. Simul. 60 (2018): 72-91. · Zbl 1470.26015
[32] R. SUBASHINI, C. RAVICHANDRAN, K. JOTHIMANI AND H. M. BASKONUS, Existence results of Hilfer integro-differential equations with fractional order, Disc. Cont. Dyn. Sys.-S, 13.3 (2020): 911-923. · Zbl 1450.45006
[33] B. SUNDARAVADIVOO, Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects, Disc. Cont. Dyn. Sys.-S 13.9 (2020): 2561. · Zbl 1451.93034
[34] X.-B. SHU AND Q. WANG, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2 , Comput. Math. Appl. 64.6 (2012): 2100-2110. · Zbl 1268.34155
[35] X.-B. SHU, L. SHU AND F. XU, A new study on the mild solution for impulsive fractional evolution equations, arXiv:1907.03088 (2019).
[36] X. WANG AND X. SHU, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order 1 < α < 2 , Adv. Difference Equ. 2015.1 (2015): 159. · Zbl 1422.35178
[37] JINRONG WANG, M. FECKAN AND Y. ZHOU, Relaxed controls for nonlinear fractional impulsive evolution equations, J. Opt. Theory Appl. 156.1 (2013): 13-32. · Zbl 1263.49038
[38] JINRONG WANG, Y. ZHOU AND M. FE ČKAN, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl. 64.10 (2012): 3008-3020. · Zbl 1268.34032
[39] JINRONG WANG, Y. ZHOU AND M. FE ČKANN, Abstract Cauchy problem for fractional differential equations, Nonlinear Dyn. 71.4 (2013): 685-700. · Zbl 1268.34034
[40] R.-N. WANG, D.-H. CHEN AND T.-J. XIAO, Abstract fractional Cauchy problems with almost sec-torial operators, J. Diff. Equ. 252.1 (2012): 202-235. · Zbl 1238.34015
[41] Y. SHI, YAJING, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput. 273 (2016): 465-476. · Zbl 1410.34031
[42] H. YANG, Positive solutions for the initial value problems of impulsive evolution equations, J. Math. Research & Exposition. 31 (6) (2011): 1047-1056. · Zbl 1265.34220
[43] H. YANG AND Y. LIANG, Positive solutions for the initial value problem of fractional evolution equa-tions, Abs. Appl. Anal. Vol. 2013. Hindawi, 2013. · Zbl 1291.35430
[44] D. ZHAO, Y. LIU AND X. LI, Controllability for a class of semilinear fractional evolution systems via resolvent operators, Commun. Pure Appl. Anal. 18.1 (2019): 455. · Zbl 06969373
[45] D. ZHANG AND Y. LIANG, Existence and controllability of fractional evolution equation with secto-rial operator and impulse, Adv. Difference Equ. 2018.1 (2018): 219. (Received March 15, 2021) · Zbl 1446.34020
[46] Jorge F. Junior Department of Applied Mathematics Imecc-State University of Campinas 13083-859, Campinas, SP, Brazil e-mail: ra898061@ime.unicamp.br J. Vanterler da C. Sousa Department of Applied Mathematics Imecc-State University of Campinas 13083-859, Campinas, SP, Brazil e-mail: vanterler@ime.unicamp.br E. Capelas de Oliveira Department of Applied Mathematics Imecc-State University of Campinas 13083-859, Campinas, SP, Brazil e-mail: capelas@unicamp.br Differential Equations & Applications www.ele-math.com dea@ele-math.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.