×

Existence and differentiability of solutions for nondensely defined neutral integro-differential evolution equations. (English) Zbl 1509.37109

Summary: This paper is concerned with the existence, continuous dependence and differentiability of solutions for a semilinear neutral integro-differential evolution equation with nonlocal conditions. It is assumed that the linear part of the considered equation is not densely defined but satisfies the resolvent estimates of the Hille-Yosida condition. The results are established by applying the theory of integrated resolvent operators and Banach fixed point theorem. An example is provided in the end to illustrate the applications of the obtained results.

MSC:

37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
45K05 Integro-partial differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
35B65 Smoothness and regularity of solutions to PDEs
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Abada, N.; Benchohra, M.; Hammouche, H., Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equ., 246, 3834-3863 (2009) · Zbl 1171.34052 · doi:10.1016/j.jde.2009.03.004
[2] Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59, 327-352 (1987) · Zbl 0637.44001
[3] Arendt, W.: Resolvent positive operators. Proc. Lond. Math. Soc.(3) 54, 321-349 (1987) · Zbl 0617.47029
[4] Arendt, W.; Batty, CJK; Hieber, M.; Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems (2010), Basel: Birkhauser, Basel · Zbl 1226.34002
[5] Bahuguna, D., Existence, uniqueness and regularity of solutions to semilinear nonlocal functional differential problems, Nonlinear Anal., 57, 1021-1028 (2004) · Zbl 1065.34078 · doi:10.1016/j.na.2004.03.026
[6] Byszewski, L., Theorems about existence and uniqueness of a solution of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162, 496-505 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[7] Balachandran, K.; Ilamaran, S., Existence and uniqueness of mild and strong solutions of a semilinear evolution equation with nonlocal conditions, Indian J. Pure Appl. Math., 25, 411-418 (1994) · Zbl 0808.47047
[8] Cannarsa, P.; Sforza, D., Global solutions of abstract semilinear parabolic equations with memory terms, Nonlinear Diff. Equ. Appl., 10, 399-430 (2003) · Zbl 1052.35085 · doi:10.1007/s00030-003-1004-2
[9] Chang, Y.; Li, W., Solvability for impulsive neutral integro-differential equations with state-dependent delay via fractional operators, J. Optim. Theory Appl., 144, 445-459 (2010) · Zbl 1200.34096 · doi:10.1007/s10957-009-9612-6
[10] Chen, P.; Zhang, X.; Li, Y., Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calc, Appl. Anal., 23, 268-291 (2020) · Zbl 1441.34006
[11] Clément, Ph; Prüss, J., Global existence for a semilinear parabolic Volterra equation, Math. Z., 209, 17-26 (1992) · Zbl 0724.45012 · doi:10.1007/BF02570816
[12] Coleman, BD; Gurtin, ME, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18, 199-208 (1967) · doi:10.1007/BF01596912
[13] Deng, K., Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179, 630-637 (1993) · Zbl 0798.35076 · doi:10.1006/jmaa.1993.1373
[14] Da Prato, G.; Sinestrari, E., Differential operators with non-dense domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14, 285-344 (1987) · Zbl 0652.34069
[15] Ding, H.; Xiao, T.; Liang, J., Pseudo almost periodic solutions to integro-differential equations of heat conduction in materials with memory, Nonlinear Anal., 13, 2659-2670 (2012) · Zbl 1253.35195 · doi:10.1016/j.nonrwa.2012.03.009
[16] Dos Santos, J.; Henríquez, H.; Hernández, E., Existence results for neutral integro-differential equations with unbounded delay, J. Integral Equ. Appl., 23, 289-330 (2011) · Zbl 1228.45019 · doi:10.1216/JIE-2011-23-2-289
[17] Desch, W.; Grimmer, R.; Schappacher, W., Wellposedness and wave propagation for a class of integrodifferential equations in Banach space, J. Differ. Equ., 74, 391-411 (1988) · Zbl 0663.45008 · doi:10.1016/0022-0396(88)90011-3
[18] Ezzinbi, K.; Ghnimi, S., Solvability of nondensely defined partial functional integrodifferential equations using the integrated resolvent operators, Electron. J. Qual. Theory Differ. Equ., 2019, 1-21 (2019) · Zbl 1463.45044 · doi:10.14232/ejqtde.2019.1.88
[19] Ezzinbi, K.; Ghnimi, S., Existence and regularity for some partial neutral functional integrodifferential equations with nondense domain, Bull. Malays. Math. Sci. Soc., 43, 2967-2987 (2020) · Zbl 1474.45065 · doi:10.1007/s40840-019-00847-0
[20] Fan, Z., Existence of nondensely defined evolution equations with nonlocal conditions, Nonlinear Anal., 70, 3829-3836 (2009) · Zbl 1170.34345 · doi:10.1016/j.na.2008.07.036
[21] Fu, X.; Gao, Y.; Zhang, Y., Existence of solutions for neutral integrodifferential equations with nonlocal conditions, Taiwan. J. Math., 16, 1897-1909 (2012) · Zbl 1259.34076 · doi:10.11650/twjm/1500406803
[22] Grimmer, R., Resolvent operator for integral equations in a Banach space, Trans. Am. Math. Soc., 273, 333-349 (1983) · Zbl 0493.45015 · doi:10.1090/S0002-9947-1982-0664046-4
[23] Grimmer, R.; Kappel, F., Series expansions of Volterra integrodifferential equations in Banach space, SIAM J. Math. Anal., 15, 595-604 (1984) · Zbl 0538.45012 · doi:10.1137/0515045
[24] Grimmer, R.; Pritchard, AJ, Analytic resolvent operators for integral equations in a Banach space, J. Differ. Equ., 50, 234-259 (1983) · Zbl 0519.45011 · doi:10.1016/0022-0396(83)90076-1
[25] Guerra, G.; Shen, W., Existence and stability of traveling waves for an integro-differential equation for slow erosion, J. Differ. Equ., 256, 253-282 (2014) · Zbl 1320.35138 · doi:10.1016/j.jde.2013.09.003
[26] Gu, H.; Zhou, Y.; Ahmad, B.; Alsaedi, A., Integral solutions of fractional evolution equations with nondense domain, Electron. J. Differ. Equ., 2017, 1-15 (2017) · Zbl 1377.34010
[27] Jeet, K.; Sukavanam, N., Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique, Appl. Math. Comput., 364, 1-15 (2020) · Zbl 1433.93018
[28] Kellerman, H.; Hieber, M., Integrated semigroup, J. Funct. Anal., 84, 160-180 (1989) · Zbl 0689.47014 · doi:10.1016/0022-1236(89)90116-X
[29] Liu, Q.; Yuan, R., Existence of mild solutions for semilinear evolution equations with non-local initial conditions, Nonlinear Anal., 71, 4177-4184 (2009) · Zbl 1179.34063 · doi:10.1016/j.na.2009.02.093
[30] Lin, Y.; Liu, JH, Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Anal., 26, 1023-1033 (1996) · Zbl 0916.45014 · doi:10.1016/0362-546X(94)00141-0
[31] Lunardi, A., On the linear heat equation with fading memory, SIAM J. Math. Anal., 21, 1213-1224 (1990) · Zbl 0716.35031 · doi:10.1137/0521066
[32] Miller, RK, An integrodifferential equation for rigid heat conductions with memory, J. Math. Anal. Appl., 66, 313-332 (1978) · Zbl 0391.45012 · doi:10.1016/0022-247X(78)90234-2
[33] Oka, H., Integrated resolvent operator, J. Integral Equ. Appl., 7, 193-232 (1995) · Zbl 0846.45005 · doi:10.1216/jiea/1181075869
[34] Oka, H.; Tanaka, N., Abstract quasilinear integrodifferential equations of hyperbolic type, Nonlinear Anal., 29, 903-925 (1997) · Zbl 0883.45009 · doi:10.1016/S0362-546X(96)00188-5
[35] Prüss, J., Evolutionary Integral Equations and Applications (1993), Basel: Birkhäuser Verlag, Basel · Zbl 0784.45006 · doi:10.1007/978-3-0348-8570-6
[36] Sinestrari, E., Hille-Yosida operators and Cauchy problems, Semigroup Forum, 82, 10-34 (2011) · Zbl 1231.47040 · doi:10.1007/s00233-010-9266-6
[37] Singh, V., Controllability of Hilfer Fractional differential systems with non-dense domain, Numer. Funct. Anal. Optim., 40, 1572-1592 (2019) · Zbl 1421.34006 · doi:10.1080/01630563.2019.1615947
[38] Thiems, H., Integrated semigroup and integral solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152, 416-447 (1990) · Zbl 0738.47037 · doi:10.1016/0022-247X(90)90074-P
[39] Tidke, HL; Dhakne, MB, Existence and uniqueness of mild and strong solutions of nonlinear Volterra integrodifferential equations in Banach spaces, Demonstratio Math., 43, 643-652 (2010) · Zbl 1228.45009 · doi:10.1515/dema-2010-0312
[40] Vijayakumar, V., Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces, IMA J. Math. Control Inf., 35, 297-314 (2018) · Zbl 1402.93056
[41] Wu, J., Theory and Applications of Partial Functional Differential Equations (1996), New York: Springer, New York · Zbl 0870.35116 · doi:10.1007/978-1-4612-4050-1
[42] Wang, J.; Ibrahim, AG; O’Regan, D., Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions, Nonlinear Anal. Model. Control, 24, 958-984 (2019) · Zbl 1439.34015
[43] Yan, Z.; Han, L., Optimal mild solutions for a class of nonlocal multi-valued stochastic delay differential equations, J. Optim. Theory Appl., 181, 1053-1075 (2019) · Zbl 1416.34063 · doi:10.1007/s10957-019-01490-2
[44] Zhang, Z.; Liu, B., Controllability results for fractional functional differential equations with nondense domain, Numer. Funct. Anal. Optim., 35, 443-460 (2014) · Zbl 1291.93048 · doi:10.1080/01630563.2013.813536
[45] Zhu, J.; Fu, X., Existence results for neutral integro-differential equations with nonlocal conditions, J. Integral Equ. Appl., 32, 239-258 (2020) · Zbl 1465.45011 · doi:10.1216/jie.2020.32.239
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.