×

Integral transform analysis of microchannel fluid flow: irregular geometry estimation using velocimetry data. (English) Zbl 1481.76092

Summary: A hybrid numerical-analytical solution to fluid flow in irregularly-shaped microchannels has been developed. The solution is based on the Generalized Integral Transform Technique (GITT) applied to a trapezoid-like duct to account for fabrication imperfections, as commonly found in commercially manufactured microchannels. With this approach, the eigenseries expansion is done using a 2D eigenfunction basis, constructed from a combination of simple 1D eigenfunctions defined within the original irregular domain. In order to improve convergence, a new filtering scheme based on an analytical solution to the problem in a rectangular channel, which is distorted to match the irregular domain, is employed. The solution is tested on a real microchannel geometry, obtained from a SEM image, and compared with micro-PIV measurements for the flow field in the same channel. In addition, the actual velocimetry data is input to an inverse problem implementation for recovering geometric parameters related to the irregular geometry using the GITT results as the forward solution. The numerical results obtained with the GITT presented a very satisfactory convergence, and the inverse solution was able to recover the channel geometric parameters with very reasonable accuracy.

MSC:

76D99 Incompressible viscous fluids
Full Text: DOI

References:

[1] Duan, Z.; Muzychka, Y. S., Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels, J. Fluids Eng., 132, 1, 011201 (2010)
[2] Li, Z. X., Experimental study on flow characteristics of liquid in circular microtubes, Microsc. Thermophys. Eng., 7, 3, 253-265 (2003)
[3] Bahrami, M.; Yovanovich, M.; Culham, J., Pressure drop of fully developed, laminar flow in rough microtubes, J. Fluids Eng., 128, 3, 632-637 (2006)
[4] Mala, G. M.; Li, D., Flow characteristics of water in microtubes, Int. J. Heat Fluid Flow, 20, 2, 142-148 (1999)
[5] Çetin, B.; Zeinali, S., Analysis of heat transfer and entropy generation for a low-Péclet-number microtube flow using a second-order slip model: an extended-Graetz problem, J. Eng. Math., 89, 13-25 (2014) · Zbl 1359.76275
[6] Issa, L., A simplified model for unsteady pressure driven flows in circular microchannels of variable cross-section, Appl. Math. Model., 59, 410-426 (2018) · Zbl 1480.76034
[7] Gamrat, G.; Favre-Marinet, M.; Asendrych, D., Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels, Int. J. Heat Mass Transf., 48, 14, 2943-2954 (2005)
[8] Lee, P. S.; Garimella, S. V.; Liu, D., Investigation of heat transfer in rectangular microchannels, Int. J. Heat Mass Transf., 48, 9, 1688-1704 (2005)
[9] Chu, J.-C.; Teng, J.-T.; Greif, R., Experimental and numerical study on the flow characteristics in curved rectangular microchannels, Appl. Therm. Eng., 30, 13, 1558-1566 (2010)
[10] Tamayol, A.; Bahrami, M., Laminar flow in microchannels with noncircular cross section, J. Fluids Eng., 132, 11, 111201 (2010)
[11] Bhattacharyya, S.; Bera, S., Combined electroosmosis-pressure driven flow and mixing in a microchannel with surface heterogeneity, Appl. Math. Model., 39, 15, 4337-4350 (2015) · Zbl 1443.76241
[12] Hao, P. F.; He, F.; Zhu, K. Q., Flow characteristics in a trapezoidal silicon microchannel, J. Micromech. Microeng., 15, 6, 1362 (2005)
[13] Sheikhalipour, T.; Abbassi, A., Viscous dissipation effect in trapezoidal microchannels at constant heat flux, Proceedings of the Second Micro and Nano Flows Conference (MNF2009) (2009), Brunel University: Brunel University West London, UK
[14] Weilin, Q.; Mala, G. M.; Dongqing, L., Pressure-driven water flows in trapezoidal silicon microchannels, Int. J. Heat Mass Transf., 43, 3, 353-364 (2000) · Zbl 0948.76509
[15] Cao, B.; Chen, G. W.; Yuan, Q., Fully developed laminar flow and heat transfer in smooth trapezoidal microchannel, Int. Commun. Heat Mass Transf., 32, 9, 1211-1220 (2005)
[16] McHale, J. P.; Garimella, S. V., Heat transfer in trapezoidal microchannels of various aspect ratios, Int. J. Heat Mass Transf., 53, 1, 365-375 (2010) · Zbl 1180.80032
[17] Morini, G. L., Laminar liquid flow through silicon microchannels, J. Fluids Eng., 126, 3, 485-489 (2004)
[18] Qu, W.; Mala, G. M.; Li, D., Heat transfer for water flow in trapezoidal silicon microchannels, Int. J. Heat Mass Transf., 43, 21, 3925-3936 (2000) · Zbl 0958.76504
[19] Li, J.; Peterson, G. P.; Cheng, P., Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow, Int. J. Heat Mass Transf., 47, 19, 4215-4231 (2004) · Zbl 1111.76324
[20] Mecili, M.; Mezaache, E. H., Slug-flow heat transfer in parallel plate microchannel including slip effects and axial conduction, Energy Procedia, 36, 268-277 (2013)
[21] El-Genk, M. S.; Pourghasemi, M., Analytical and numerical investigations of friction number for laminar flow in microchannels, J. Fluids Eng., 141, 3, 031102 (2019)
[22] Zhang, Y.; Wong, T. N.; Yang, C.; Ooi, K. T., Electroosmotic flow in irregular shape microchannels, Int. J. Eng. Sci., 43, 19, 1450-1463 (2005)
[23] Aparecido, J. B.; Cotta, R. M.; Özisik, M. N., Analytical solutions to two-dimensional diffusion type problems in irregular geometries, J. Franklin Inst., 326, 421-434 (1989) · Zbl 0691.35072
[24] Barbuto, F. A.A.; Cotta, R. M., Integral transformation of elliptic problems within irregular domains: Fully developed channel flow, Int. J. Numer. Methods Heat Fluid Flow, 7, 8, 778-793 (1997) · Zbl 1063.76616
[25] Pérez Guerrero, J. S.; Quaresma, J. N.N.; Cotta, R. M., Simulation of laminar flow inside ducts of irregular geometry using integral transforms, Comput. Mech., 25, 4, 413-420 (2000) · Zbl 0966.76069
[26] Cotta, R. M., Integral Transforms in Computational Heat and Fluid Flow (1993), CRC Press: CRC Press Boca Raton · Zbl 0974.35004
[27] Morini, G. L.; Yang, Y., Guidelines for the determination of single-phase forced convection coefficients in microchannels, J. Heat Transf. (ASME), 135, 10 (2013)
[28] Miyagawa, H. K.; Quaresma, J. N.; Lisboa, K. M.; Cotta, R. M., Integral transform analysis of convective heat transfer within wavy walls channels, Numer. Heat Transf. A: Appl., 77, 5, 460-481 (2020)
[29] Lisboa, K. M.; Cotta, R. M., Analysis of the mass transport in corrugated membraneless flow batteries, Appl. Math. Model., 77, 1512-1530 (2020) · Zbl 1481.76279
[30] Pinheiro, I. F.; Sphaier, L. A.; Knupp, D. C., Integral transform solution of eigenvalue problems within irregular geometries: comparative analysis of different methodologies, Numer. Heat Transf. B: Fundam. (2019)
[31] Sphaier, L. A.; Cotta, R. M., Integral transform analysis of multidimensional eigenvalue problems within irregular domains, Numer. Heat Transf. B: Fundam., 38, 2, 157-175 (2000)
[32] Sphaier, L. A.; Cotta, R. M., Analytical and hybrid solutions of diffusion problems within arbitrarily shaped regions via integral transforms, Comput. Mech., 29, 3, 265-276 (2002) · Zbl 1119.76365
[33] Knupp, D. C.; Cotta, R. M.; Naveira-Cotta, C. P., Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms, Int. J. Heat Mass Transf., 82, 479-489 (2015)
[34] Cotta, R. M.; Naveira-Cotta, C.; Knupp, D. C.; Zotin, J.; Pontes, P.; Almeida, A., Recent advances in computational-analytical integral transforms for convection-diffusion problems, Heat Mass Transf., 54, 8, 2475-2496 (2018)
[35] Puccetti, G.; Pulvirenti, B.; Morini, G. L., Experimental determination of the 2D velocity laminar profile in glass microchannels using μPIV, Energy Procedia, 45, 538-547 (2014)
[36] Levenberg, K., A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math, 2, 164—168 (1944) · Zbl 0063.03501
[37] Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 2, 431-441 (1963) · Zbl 0112.10505
[38] M.N. Özışık, H.R.B. Orlande, Inverse heat transfer: fundamentals and applications, 2000.
[39] Dennis Jr, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, 16 (1996), Siam · Zbl 0847.65038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.