×

Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators. (English) Zbl 1504.35013

Summary: We prove functional inequalities on vector fields \(u:\mathbb{R}^d\rightarrow\mathbb{R}^d\) when \(\mathbb{R}^d\) is equipped with a bounded measure \(\mathrm{e}^{-\phi}\text{d}x\) that satisfies a Poincaré inequality, and study associated self-adjoint operators. The weighted Korn inequality compares the differential matrix Du, once projected orthogonally to certain finite-dimensional spaces, with its symmetric part \(D^su\) and, in an improved form of the inequality, an additional term \(\nabla\phi\cdot u\). We also consider Poincaré-Korn inequalities for estimating a projection of \(u\) by \(D^su\) and zeroth-order versions of these inequalities obtained using the Witten-Laplace operator. The constants depend on geometric properties of the potential \(\phi\) and the estimates are quantitative and constructive. These inequalities are motivated by kinetic theory and related with the Korn inequality (1906) in mechanics, which compares Du and \(D^su\) on a bounded domain.

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of \(N\)-body Schrödinger operators, vol. 29 of Mathematical Notes. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982 · Zbl 0503.35001
[2] Ahmed, ZM; Stroock, DW, A Hodge theory for some non-compact manifolds, J. Differ. Geom., 54, 1, 177-225 (2000) · Zbl 1073.58001 · doi:10.4310/jdg/1214342150
[3] Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, vol. 1123 of Lecture Notes in Math. Springer, Berlin, pp. 177-206, 1985 · Zbl 0561.60080
[4] Bardos, C.; Golse, F.; Nguyen, TT; Sentis, R., The Maxwell-Boltzmann approximation for ion kinetic modeling, Phys. D, 376, 377, 94-107 (2018) · Zbl 1398.35241 · doi:10.1016/j.physd.2017.10.014
[5] Bauer, S., Pauly, D.: On Korn’s first inequality for mixed tangential and normal boundary conditions on bounded Lipschitz domains in \(\mathbb{R}^N\). Ann. Univ. Ferrara Sez. VII Sci. Mat. 62, 2, pp. 173-188, 2016 · Zbl 1364.46028
[6] Bauer, S., Pauly, D.: On Korn’s first inequality for tangential or normal boundary conditions with explicit constants. Math. Methods Appl. Sci.39(18), 5695-5704, 2016 · Zbl 1357.35008
[7] Carrapatoso, K., Dolbeault, J., Hérau, F., Mischler, S., Mouhot, C., Schmeiser, C.: Special macroscopic modes and hypocoercivity. arXiv:2105.04855, 2021
[8] Ciarlet, P. G.: Mathematical elasticity. Vol. I, vol. 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1988 · Zbl 0648.73014
[9] Ciarlet, PG, Linear and Nonlinear Functional Analysis with Applications (2013), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1293.46001
[10] Courtade, TA; Fathi, M., Stability of the Bakry-Émery theorem on \(\mathbb{R}^n\), J. Funct. Anal., 279, 2, 108523 (2020) · Zbl 1437.35005 · doi:10.1016/j.jfa.2020.108523
[11] Cycon, HL; Froese, RG; Kirsch, W.; Simon, B., Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics (1987), Berlin: Springer, Berlin · Zbl 0619.47005 · doi:10.1007/978-3-540-77522-5
[12] Desvillettes, L., Villani, C.: On a variant of Korn’s inequality arising in statistical mechanics. ESAIM Control Optim. Calc. Var. 8,: 603-619 (electronic). A tribute to J. L, Lions, 2002 · Zbl 1092.82032
[13] Desvillettes, L.; Villani, C., On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159, 2, 245-316 (2005) · Zbl 1162.82316 · doi:10.1007/s00222-004-0389-9
[14] Dolbeault, J.; Volzone, B., Improved poincaré inequalities, Nonlinear Anal. Theory Methods Appl., 75, 16, 5985-6001 (2012) · Zbl 1250.26018 · doi:10.1016/j.na.2012.05.008
[15] Duan, R., Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24, 8, 2165-2189 (2011) · Zbl 1237.35125 · doi:10.1088/0951-7715/24/8/003
[16] Duvaut, G., Lions, J.-L.: Inequalities in mechanics and physics. Springer, Berlin-New York, Translated from the French by C, p. 219. W. John, Grundlehren der Mathematischen Wissenschaften, 1976 · Zbl 0331.35002
[17] Escobedo, M.; Kavian, O., Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal., 11, 10, 1103-1133 (1987) · Zbl 0639.35038 · doi:10.1016/0362-546X(87)90001-0
[18] Figalli, A.: A geometric lower bound on Grad’s number. ESAIM Control Optim. Calc. Var.15(3), 569-575, 2009 · Zbl 1167.49040
[19] Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math.2(48), 441-471, 1947 · Zbl 0029.17002
[20] Grad, H.: On Boltzmann’s \(H\)-theorem. J. Soc. Ind. Appl. Math.13, 259-277, 1965
[21] Helffer, B.; Nier, F., Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians. Lecture Notes in Mathematics (2005), Berlin: Springer, Berlin · Zbl 1072.35006 · doi:10.1007/b104762
[22] Helffer, B.; Sjöstrand, J., On the correlation for Kac-like models in the convex case, J. Stat. Phys., 74, 1-2, 349-409 (1994) · Zbl 0946.35508 · doi:10.1007/BF02186817
[23] Hérau, F.; Nier, F., Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171, 2, 151-218 (2004) · Zbl 1139.82323 · doi:10.1007/s00205-003-0276-3
[24] Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev.37(4), 491-511, 1995 · Zbl 0840.73010
[25] Johnsen, J.: On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb’s inequality. Integral Equ. Oper. Theory36(3), 288-324, 2000 · Zbl 1023.58012
[26] Kato, T., Schrödinger operators with singular potentials, Israel J. Math., 13, 1972, 135-148 (1973) · Zbl 0246.35025
[27] Kondratiev, V.A., Oleinik, O.A.: On Korn’s inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308(16), 483-487, 1989 · Zbl 0698.35067
[28] Korn, A.: Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche. Akad. der Wissensch., Munich, Math. phys. KI. 36, 351, 1906 · JFM 37.0825.01
[29] Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas ou les efforts sont donnés à la surface. Annales de la Faculté des sciences de Toulouse: Mathématiques 2ième Série, 10, 165-269, 1908 · JFM 39.0853.03
[30] Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Krak. Anz.705-724, 1909 · JFM 40.0884.02
[31] Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001) · Zbl 0995.60002
[32] Lewicka, M., Müller, S.: On the optimal constants in Korn’s and geometric rigidity estimates, in bounded and unbounded domains, under Neumann boundary conditions. Indiana Univ. Math. J.65(2), 377-397, 2016 · Zbl 1405.74010
[33] Mouhot, C., Russ, E., Sire, Y.: Fractional Poincaré inequalities for general measures. J. Math. Pures Appl. (9)95(1), 72-84, 2011 · Zbl 1208.26025
[34] Neff, P., Pauly, D., Witsch, K.-J.: Poincaré meets Korn via Maxwell: extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ.258(4), 1267-1302, 2015 · Zbl 1310.35012
[35] Nitsche, J.A.: On Korn’s second inequality. RAIRO Anal. Numér.15(3), 237-248, 1981 · Zbl 0467.35019
[36] Persson, A., Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., 8, 143-153 (1960) · Zbl 0145.14901 · doi:10.7146/math.scand.a-10602
[37] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975 · Zbl 0308.47002
[38] Simader, CG, Essential self-adjointness of Schrödinger operators bounded from below, Math. Z., 159, 1, 47-50 (1978) · Zbl 0409.35026 · doi:10.1007/BF01174567
[39] Sjöstrand, J., Correlation asymptotics and Witten Laplacians, Algebra i Analiz, 8, 1, 160-191 (1996) · Zbl 0877.35084
[40] Witten, E., Supersymmetry and Morse theory, J. Differ. Geom., 17, 4, 661-692 (1982) · Zbl 0499.53056 · doi:10.4310/jdg/1214437492
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.