×

Self-improvement of the Bakry-Emery criterion for Poincaré inequalities and Wasserstein contraction using variable curvature bounds. (English. French summary) Zbl 1498.60324

Summary: We study Poincaré inequalities and long-time behavior for diffusion processes on \(\mathbb{R}^n\) under a variable curvature lower bound, in the sense of Bakry-Emery. We derive various estimates on the rate of convergence to equilibrium in \(L^1\) optimal transport distance, as well as bounds on the constant in the Poincaré inequality in several situations of interest, including some where curvature may be negative. In particular, we prove a self-improvement of the Bakry-Emery estimate for Poincaré inequalities when curvature is positive but not constant.

MSC:

60J60 Diffusion processes
58J65 Diffusion processes and stochastic analysis on manifolds
47D07 Markov semigroups and applications to diffusion processes
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
60E15 Inequalities; stochastic orderings
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] Alonso-Gutierrez, D.; Bastero, J., Approaching the Kannan-Lovasz-Simonovits and Variance Conjectures, LNM, vol. 2131 (2015), Springer · Zbl 1318.52001
[2] Ané, C.; Blachère, S.; Chafaï, D.; Fougères, P.; Gentil, I.; Malrieu, F.; Roberto, C.; Scheffer, G., Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses, vol. 10 (2000), Société Mathématique de France: Société Mathématique de France Paris · Zbl 0982.46026
[3] Arnaudon, M.; Bonnefont, M.; Joulin, A., Intertwinings and generalized Brascamp-Lieb inequalities, Rev. Mat. Iberoam., 34, 3, 1021-1054 (2018) · Zbl 1428.60112
[4] Arnaudon, M.; Thalmaier, A.; Wang, F. Y., Equivalent Harnack and gradient inequalities for pointwise curvature lower bound, Bull. Sci. Math., 138, 643-655 (2014) · Zbl 1296.58024
[5] Assaraf, R.; Jourdain, B.; Lelièvre, T.; Roux, R., Computation of sensitivities for the invariant measure of a parameter dependent diffusion, Stoch. Partial Differ. Equ., Anal. Computat., 6, 2, 125-183 (2018) · Zbl 1401.37087
[6] Bakry, D.; Barthe, F.; Cattiaux, P.; Guillin, A., A simple proof of the Poincaré inequality for a large class of probability measures, Electron. Commun. Probab., 13, 60-66 (2008) · Zbl 1186.26011
[7] Bakry, D.; Gentil, I.; Ledoux, M., Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenchaften., vol. 348 (2014), Springer: Springer Berlin · Zbl 1376.60002
[8] Bakry, D.; Gentil, I.; Ledoux, M., On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 14, 705-727 (2015) · Zbl 1331.35151
[9] Barthe, F.; Milman, E., Transference principles for log-Sobolev and spectral-gap with applications to conservative spin systems, Commun. Math. Phys., 323, 575-625 (2013) · Zbl 1297.82011
[10] Bobkov, S. G., Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probab., 27, 4, 1903-1921 (1999) · Zbl 0964.60013
[11] Bolley, F.; Gentil, I.; Guillin, A., Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal., 263, 8, 2430-2457 (2012) · Zbl 1253.35183
[12] Bonnefont, M.; Joulin, A., Intertwining relations for one-dimensional diffusions and application to functional inequalities, Potential Anal., 41, 1005-1031 (2014) · Zbl 1311.60086
[13] Bonnefont, M.; Joulin, A.; Ma, Y., Spectral gap for spherically symmetric log-concave probability measures, and beyond, J. Funct. Anal., 270, 7, 2456-2482 (2016) · Zbl 1347.60114
[14] Braun, M.; Habermann, K.; Sturm, K. T., Optimal transport, gradient estimates, and pathwise Brownian coupling on spaces with variable Ricci bounds, J. Math. Pures Appl., 147, 60-97 (2021) · Zbl 1459.58013
[15] Cattiaux, P., A pathwise approach of some classical inequalities, Potential Anal., 20, 361-394 (2004) · Zbl 1050.47041
[16] Cattiaux, P., Hypercontractivity for perturbed diffusion semigroups, Ann. Fac. Sci. Toulouse Math. (6), 14, 4, 609-628 (2005) · Zbl 1089.60520
[17] Cattiaux, P.; Guillin, A., Deviation bounds for additive functionals of Markov processes, ESAIM Probab. Stat., 12, 12-29 (2008) · Zbl 1183.60011
[18] Cattiaux, P.; Guillin, A., Semi log-concave Markov diffusions, (Séminaire de Probabilités XLVI. Séminaire de Probabilités XLVI, Lecture Notes in Math., vol. 2123 (2014), Springer: Springer Cham), 231-292 · Zbl 1390.60286
[19] Cattiaux, P.; Guillin, A., On the Poincaré constant of log-concave measures, (Geometric Aspects of Functional Analysis Israel Seminar (GAFA) (2020), Springer: Springer Cham) · Zbl 1390.60286
[20] Cattiaux, P.; Guillin, A.; Zitt, P. A., Poincaré inequalities and hitting times, Ann. Inst. Henri Poincaré Probab. Stat., 49, 1, 95-118 (2013) · Zbl 1270.26018
[21] Chen, Yuansi, An almost constant lower bound of the isoperimetric coefficient in the kls conjecture, (Geometric and Functional Analysis (GAFA) (2021)) · Zbl 1495.52003
[22] Cheng, X.; Zhou, D., Eigenvalues of the drifted Laplacian on complete metric measure spaces, Commun. Contemp. Math., 17 (2017) · Zbl 1360.58022
[23] T.A. Courtade, M. Fathi, Stability in the Bakry-Emery theorem on \(\mathbb{R}^n\), preprint, 2018. · Zbl 1437.35005
[24] Davies, E. B., Heat Kernels and Spectral Theory, Camb. Tracts Math., vol. 92 (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0699.35006
[25] De Philippis, G.; Figalli, A., Rigidity and stability of Caffarelli’s log-concave perturbation theorem, Nonlinear Anal., 154, 59-70 (2017) · Zbl 1359.60050
[26] Elworthy, K. D.; Li, X.-M., Formulae for the derivatives of heat semigroups, J. Funct. Anal., 125, 1, 252-286 (1994) · Zbl 0813.60049
[27] G. Ferré, M. Rousset, G. Stoltz, More on the long time stability of Feynman-Kac semigroups, preprint, 2018. · Zbl 1493.60088
[28] Gigli, N.; Ketterer, C.; Kuwada, K.; Ohta, S., Rigidity for the spectral gap on \(R C D(K, \infty)\)-spaces, Am. J. Math., 142, 5, 1559-1594 (2020) · Zbl 1462.58014
[29] Gozlan, N.; Roberto, C.; Samson, P.-M., From concentration to logarithmic Sobolev and Poincaré inequalities, J. Funct. Anal., 260, 1491-1522 (2013) · Zbl 1226.60024
[30] Guillin, A.; Léonard, C.; Wu, L.; Yao, N., Transportation-information inequalities for Markov processes, Probab. Theory Relat. Fields, 144, 3-4, 669-695 (2009) · Zbl 1169.60304
[31] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, vol. 24 (1981), North-Holland Publishing Co./Kodansha, Ltd.: North-Holland Publishing Co./Kodansha, Ltd. Amsterdam-New York/Tokyo · Zbl 0495.60005
[32] Joulin, A.; Ollivier, Y., Curvature, concentration and error estimates for Markov chain Monte Carlo, Ann. Probab., 38, 6, 2418-2442 (2010) · Zbl 1207.65006
[33] Kannan, R.; Lovasz, L.; Simonovits, M., Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom., 13, 3-4, 541-559 (1995) · Zbl 0824.52012
[34] Kavian, O.; Kerkyacharian, G.; Roynette, B., Quelques remarques sur l’ultracontractivité, J. Funct. Anal., 111, 1, 155-196 (1993) · Zbl 0807.47027
[35] Klartag Bo’az, Joseph Lehec, Bourgain’s slicing problem and kls isoperimetry up to polylog, preprint, 2022. · Zbl 1509.52002
[36] Kontoyiannis, I.; Meyn, S. P., Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes, Electron. J. Probab., 10, 3, 61-123 (2005) · Zbl 1079.60067
[37] Kunita, H., Stochastic differential equations and stochastic flows of diffeomorphisms, (École d’été de probabilités de Saint-Flour, XII—1982. École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol. 1097 (1984), Springer: Springer Berlin), 143-303 · Zbl 0554.60066
[38] Kuwada, Kazumasa, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258, 11, 3758-3774 (2010) · Zbl 1194.53032
[39] Lee, Y. T.; Vempala, S. S., Eldan’s stochastic localization and the KLS hyperplane conjecture: an improved lower bound for expansion, (Proc. of IEEE FOCS 2017 (2017))
[40] Léonard, C., Girsanov theory under a finite entropy condition, (Séminaire de probabilités de Strasbourg, XLIV. Séminaire de probabilités de Strasbourg, XLIV, Lecture Notes in Mathematics, vol. 2046 (2012)), 429-465 · Zbl 1253.60051
[41] Lezaud, P., Chernoff and Berry-Eessen inequalities for Markov processes, ESAIM Probab. Stat., 5, 183-201 (2001) · Zbl 0998.60075
[42] Malrieu, F.; Talay, D., Concentration inequalities for Euler schemes, (Monte Carlo and Quasi-Monte Carlo Methods 2004 (2006), Springer: Springer Berlin), 355-371 · Zbl 1097.65012
[43] Millet, A.; Nualart, D.; Sanz, M., Integration by parts and time reversal for diffusion processes, Ann. Probab., 17, 1, 208-238 (1989) · Zbl 0681.60077
[44] Milman, E., On the role of convexity in isoperimetry, spectral-gap and concentration, Invent. Math., 177, 1-43 (2009) · Zbl 1181.52008
[45] Milman, E., Isoperimetric and concentration inequalities: equivalence under curvature lower bound, Duke Math. J., 154, 2, 207-239 (2010) · Zbl 1205.53038
[46] Ohta, S.; Takatsu, A., Equality in the logarithmic Sobolev inequality, Manuscr. Math., 162, 1-2, 271-282 (2020) · Zbl 1439.53039
[47] Otto, F.; Villani, C., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173, 361-400 (2000) · Zbl 0985.58019
[48] Röckner, M.; Wang, F. Y., Weak Poincaré inequalities and \(\mathbb{L}^2\)-convergence rates of Markov semigroups, J. Funct. Anal., 185, 2, 564-603 (2001) · Zbl 1009.47028
[49] Veysseire, L., Improved spectral gap bounds on positively curved manifolds (2011), Available on
[50] von Renesse, M. K.; Sturm, K. T., Transport inequalities, gradient estimates, entropy and Ricci curvature, Commun. Pure Appl. Math., 68, 923-940 (2005) · Zbl 1078.53028
[51] Wang, F-Y., Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields, 109, 3, 417-424 (1997) · Zbl 0887.35012
[52] Wang, F. Y., Functional Inequalities, Markov Processes and Spectral Theory (2005), Science Press: Science Press Beijing
[53] Wu, L., A deviation inequality for non-reversible Markov process, Ann. Inst. Henri Poincaré Probab. Stat., 36, 4, 435-445 (2000) · Zbl 0972.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.