×

Stability of eigenvalues and observable diameter in RCD\((1, \infty)\) spaces. (English) Zbl 1502.53069

This paper studies the stability of the spectral gap and observable diameter for metric measure spaces satisfying the RCD\((1,\infty)\) condition. A metric measure space \((M, d, \mu)\) satisfies the RCD\((K,\infty)\) condition (Riemannian curvature-dimension condition) for some \(K\in{\mathbb{R}}\) if the relative entropy is \(K\)-convex along \(W_2\)-geodesics on \({\mathcal{P}}_2(M)\), the space of Borel probability measures on \(M\) with finite second-order moment, and satisfies a quadratic form of Cheeger energy.
The authors show that if such a space has an almost maximal spectral gap, then it almost contains a Gaussian component, and the Laplacian has eigenvalues that are close to any integers, with dimension-free quantitative bounds. Under the additional assumption that the space admits a needle disintegration, they prove that the spectral gap is almost maximal if and only if the observable diameter is almost maximal, again with quantitative dimension-free bounds.

MSC:

53C24 Rigidity results
58C40 Spectral theory; eigenvalue problems on manifolds
60F05 Central limit and other weak theorems

References:

[1] Ambrosio, L., Di Marino, S. Gigli, N.: Perimeter as relaxed Minkowski content in metric measure spaces. Nonlinear Anal. Theory Methods Appl. Ser. A 153:78-88 (2017) · Zbl 1359.28002
[2] Aino, M., Sphere theorems and eigenvalue pinching without positive Ricci curvature assumption, Calc. Var. Partial Differ. Equ., 58, 4 (2019) · Zbl 1420.53042 · doi:10.1007/s00526-019-1588-y
[3] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 2, 289-391 (2014) · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1
[4] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 7, 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605
[5] Ambrosio, L., Mondino, A.: Gaussian-type isoperimetric inequalities in \(\sf RCD(K,\infty )\) probability spaces for positive \(K\). Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 27(4):497-514 (2016) · Zbl 1351.49056
[6] Aubry, E., Pincement sur le spectre et le volume en courbure de Ricci positive, Ann. Sci. École Norm. Sup (4), 38, 3, 387-405 (2005) · Zbl 1085.53024 · doi:10.1016/j.ansens.2005.01.002
[7] Bakry, D.: Transformations de Riesz pour les semi-groupes symétriques. II: Étude sous la condition \(\Gamma_2\ge 0\). Sémin. de probabilités XIX, Univ. Strasbourg 1983/84, Proc., Lect. Notes Math. 1123, 145-174 (1985) · Zbl 0561.42011
[8] Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on probability theory. Ecole d’Eté de Probabilités de Saint- Flour XXII-1992. Summer School, 9th-25th July, 1992, Saint-Flour, France, pp. 1-114. Springer, Berlin (1994) · Zbl 0856.47026
[9] Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 348. Springer, Cham (2014) · Zbl 1376.60002
[10] Bobkov, SG; Houdré, C., Some connections between isoperimetric and Sobolev-type inequalities (1997), Providence, RI: American Mathematical Society (AMS), Providence, RI · Zbl 0886.49033
[11] Bertrand, J.; Ketterer, C.; Mondello, I.; Richard, T., Stratified spaces and synthetic Ricci curvature bounds, Ann. Inst. Fourier, 71, 1, 123-173 (2021) · Zbl 1481.53051 · doi:10.5802/aif.3393
[12] Borell, C., The Brunn-Minkowski inequality in Gaussian space, Invent. Math., 30, 2, 207-216 (1975) · Zbl 0292.60004 · doi:10.1007/BF01425510
[13] Caffarelli, LA, Monotonicity properties of optimal transportation and the FKG and related inequalities, Commun. Math. Phys., 214, 3, 547-563 (2000) · Zbl 0978.60107 · doi:10.1007/s002200000257
[14] Cavalletti, F., Gigi, N., Santarcangelo, F.: Displacement convexity of entropy and the distance cost optimal transportation. To appear in Ann. Fac. Sci. Toulouse (2020) · Zbl 1471.49033
[15] Cavalletti, F., Mondino, A., Semola, D.: Quantitative obata’s theorem. Arxiv preprint, 92019)
[16] Cavalletti, F.; Milman, E., The globalization theorem for the curvature-dimension condition, Invent. Math., 226, 1, 1-137 (2021) · Zbl 1479.53049 · doi:10.1007/s00222-021-01040-6
[17] Cavalletti, F.; Mondino, A., Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., 208, 3, 803-849 (2017) · Zbl 1375.53053 · doi:10.1007/s00222-016-0700-6
[18] Cheng, SY, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143, 3, 1289-297 (1975) · Zbl 0329.53035 · doi:10.1007/BF01214381
[19] Cheng, X., Zhou, D.: Eigenvalues of the drifted Laplacian on complete metric measure spaces. Commun. Contemp. Math. 19(1), 1650001, 17 (2017) · Zbl 1360.58022
[20] Courtade, T.A., Fathi, M.: Stability of the Bakry-Émery theorem on \(\mathbb{R}^n\). J. Funct. Anal. 279(2):108523, 28 (2020) · Zbl 1437.35005
[21] Croke, CB, An eigenvalue pinching theorem, Invent. Math., 68, 2, 253-256 (1982) · Zbl 0505.53018 · doi:10.1007/BF01394058
[22] De Philippis, G.; Figalli, A., Rigidity and stability of Caffarelli’s log-concave perturbation theorem, Nonlinear Anal., 154, 59-70 (2017) · Zbl 1359.60050 · doi:10.1016/j.na.2016.10.006
[23] Fathi, M., Gozlan, N., Prod’homme, M.: A proof of the Caffarelli contraction theorem via entropic regularization. Calc. Var. Partial Differ. Equ. 59(3), Paper No. 96, 18 (2020) · Zbl 1458.49038
[24] Gigli, N., An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces, 2, 169-213 (2014) · Zbl 1310.53031
[25] Gigli, N., Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below (2018), Providence, RI: American Mathematical Society (AMS), Providence, RI · Zbl 1404.53056
[26] Gigli, N.; Ketterer, C.; Kuwada, K.; Ohta, S., Rigidity for the spectral gap on \({\rm Rcd}(K, \infty )\)-spaces, Am. J. Math., 142, 5, 1559-1594 (2020) · Zbl 1462.58014 · doi:10.1353/ajm.2020.0039
[27] Gigli, N.; Mondino, A.; Savaré, G., Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc (3), 111, 5, 1071-1129 (2015) · Zbl 1398.53044
[28] Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Transl. from the French by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J. LaFontaine and P. Pansu, volume 152. Boston, MA: Birkhäuser (1999) · Zbl 0953.53002
[29] Han, B-X, Rigidity of some functional inequalities on RCD spaces, J. Math. Pures Appl., 9, 145, 163-203 (2021) · Zbl 1461.53031 · doi:10.1016/j.matpur.2020.07.004
[30] Ketterer, C., Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl (9), 103, 5, 1228-1275 (2015) · Zbl 1317.53064 · doi:10.1016/j.matpur.2014.10.011
[31] Ketterer, C., Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metr. Spaces, 3, 278-295 (2015) · Zbl 1327.53051
[32] Klartag, B., Needle decompositions in Riemannian geometry, Mem. Am. Math. Soc., 249, 1180, v+77 (2017) · Zbl 1457.53028
[33] Lichnerowicz, A.: Géométrie des groupes de transformations. (French) Travaux et Recherches Mathématiques, III. Dunod, Paris 1958 ix+193 pp · Zbl 0096.16001
[34] Mai, CH; Ohta, S., Quantitative estimates for the Bakry-Ledoux isoperimetric inequality, Comment. Math. Helv., 96, 4, 693-739 (2021) · Zbl 1486.53049 · doi:10.4171/CMH/523
[35] Meckes, E., On the approximate normality of eigenfunctions of the Laplacian, Trans. Am. Math. Soc., 361, 10, 5377-5399 (2009) · Zbl 1176.58015 · doi:10.1090/S0002-9947-09-04661-3
[36] Milman, E., On the role of convexity in isoperimetry, spectral gap and concentration, Invent. Math., 177, 1, 1-43 (2009) · Zbl 1181.52008 · doi:10.1007/s00222-009-0175-9
[37] Milman, E., Spectral estimates, contractions and hypercontractivity, J. Spectr. Theory, 8, 2, 669-714 (2018) · Zbl 1396.35005 · doi:10.4171/JST/210
[38] Ohta, S.; Takatsu, A., Equality in the logarithmic Sobolev inequality, Manuscr. Math., 162, 1-2, 271-282 (2020) · Zbl 1439.53039 · doi:10.1007/s00229-019-01134-9
[39] Payne, LE; Weinberger, HF, An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., 5, 286-292 (1960) · Zbl 0099.08402 · doi:10.1007/BF00252910
[40] Petersen, P., On eigenvalue pinching in positive Ricci curvature, Invent. Math., 138, 1, 1-21 (1999) · Zbl 0988.53011 · doi:10.1007/s002220050339
[41] Petrunin, A., Alexandrov meets Lott-Villani-Sturm, Münster J. Math., 4, 53-64 (2011) · Zbl 1247.53038
[42] Prékopa, A., On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), 34, 335-343 (1973) · Zbl 0264.90038
[43] Ross, N., Fundamentals of Stein’s method, Probab. Surv., 8, 210-293 (2011) · Zbl 1245.60033 · doi:10.1214/11-PS182
[44] Savaré, G., Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in \({\rm RCD}(K,\infty )\) metric measure spaces, Discrete Contin. Dyn. Syst., 34, 4, 1641-1661 (2014) · Zbl 1275.49087 · doi:10.3934/dcds.2014.34.1641
[45] Shioya, T.: Metric measure geometry, volume 25 of IRMA Lectures in Mathematics and Theoretical Physics. EMS Publishing House, Zürich, Gromov’s theory of convergence and concentration of metrics and measures (2016) · Zbl 1335.53003
[46] Takatsu, A.: Spectral convergence of high-dimensional spheres to gaussian spaces. preprint, (2021)
[47] Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, Vol. 58. American Mathematical Society, Providence, RI (2003) · Zbl 1106.90001
[48] Villani, C.: Optimal transport, Volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009). Old and new · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.