×

On a conjectural symmetric version of Ehrhard’s inequality. (English) Zbl 07891376

Summary: We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting \(J_{k-1}(s)=\int^s_0 t^{k-1} e^{-\frac{t^2}{2}}dt\) and \(c_{k-1}=J_{k-1}(+\infty )\), we conjecture that the function \(F:[0,1]\rightarrow \mathbb{R} \), given by \[F(a)= \sum_{k=1}^n 1_{a\in E_k}\cdot (\beta_k J_{k-1}^{-1}(c_{k-1} a)+\alpha_k) \] (with an appropriate choice of a decomposition \([0,1]=\bigcup_i E_i\) and coefficients \(\alpha_i, \beta_i)\) satisfies, for all symmetric convex sets \(K\) and \(L\), and any \(\lambda \in [0,1]\), \[ F\left (\gamma (\lambda K+(1-\lambda )L)\right )\geq \lambda F\left (\gamma (K)\right )+(1-\lambda ) F\left (\gamma (L)\right ).\] We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set \(K\), its Gaussian concavity power \(p_s(K,\gamma )\) is greater than or equal to \(p_s(RB^k_2\times \mathbb{R}^{n-k},\gamma )\), for some \(k\in \{1,\dots ,n\} \). We call the sets \(RB^k_2\times \mathbb{R}^{n-k}\) round \(k\)-cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see S. Heilman [Am. J. Math. 143, No. 1, 53–94 (2021; Zbl 1462.53003)]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set \(K\) in \(\mathbb{R}^n\), \[ p_s(K,\gamma )\geq \sup_{F\in L^2(K,\gamma )\cap Lip(K):\,\int F=1} \left (2T_{\gamma }^F(K)-Var(F)\right )+\frac{1}{n-\mathbb{E}X^2},\] where \(T_{\gamma }^F(K)\) is the \(F-\) torsional rigidity of \(K\) with respect to the Gaussian measure. Moreover, the equality holds if and only if \(K=RB^k_2\times \mathbb{R}^{n-k}\) for some \(R>0\) and \(k=1,\dots ,n\). As a consequence, we get \[ p_s(K,\gamma )\geq Q(\mathbb{E}|X|^2, \mathbb{E}\|X\|_K^4, \mathbb{E}\|X\|^2_K, r(K)), \] where \(Q\) is a certain rational function of degree \(2\), the expectation is taken with respect to the restriction of the Gaussian measure onto \(K, \|\cdot \|_K\) is the Minkowski functional of \(K\), and \(r(K)\) is the in-radius of \(K\). The result follows via a combination of some novel estimates, the \(L2\) method (previously studied by several authors, notably A. V. Kolesnikov and E. Milman [ J. Geom. Anal. 27, No. 2, 1680–1702 (2017; Zbl 1372.53040); Am. J. Math. 140, No. 5, 1147–1185 (2018; Zbl 1408.53047); Lect. Notes Math. 2169, 221–234 (2017; Zbl 1366.60056); Local \(L^p\)-Brunn-Minkowski inequalities for \(p < 1\). Providence, RI: American Mathematical Society (AMS) (2022; Zbl 1502.52002)], A. V. Kolesnikov and the author [Adv. Math. 384, Article ID 107689, 23 p. (2021; Zbl 1479.52014)], Hosle, Kolesnikov and the author [J. Hosle et al., J. Geom. Anal. 31, No. 6, 5799–5836 (2021; Zbl 1469.52008)], A. Colesanti [Commun. Contemp. Math. 10, No. 5, 765–772 (2008; Zbl 1157.52002)], Colesanti, the author and Marsiglietti [A. Colesanti et al., J. Funct. Anal. 273, No. 3, 1120–1139 (2017; Zbl 1369.52013)], A. Eskenazis and G. Moschidis [J. Funct. Anal. 280, No. 6, Article ID 108914, 20 p. (2021; Zbl 1456.52011)]) and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function \(F\) whose composition with \(\gamma (K)\) is concave in the Minkowski sense for all symmetric convex sets.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry

References:

[1] Artstein-Avidan, Shiri, Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, xx+451 pp., 2015, American Mathematical Society, Providence, RI · Zbl 1337.52001 · doi:10.1090/surv/202
[2] Bartha, Ferenc A., Extremizers and Stability of the Betke-Weil Inequality, Michigan Math. J., 45-71, 2024 · Zbl 1541.52012 · doi:10.1307/mmj/20216063
[3] Barthe, F., An isoperimetric result for the Gaussian measure and unconditional sets, Bull. London Math. Soc., 408-416, 2001 · Zbl 1025.60008 · doi:10.1017/S0024609301008141
[4] Barthe, Frank, Spectral gaps, symmetries and log-concave perturbations, Bull. Hellenic Math. Soc., 1-31, 2020 · Zbl 1442.35276
[5] Barchiesi, Marco, Symmetry of minimizers of a Gaussian isoperimetric problem, Probab. Theory Related Fields, 217-256, 2020 · Zbl 1439.49080 · doi:10.1007/s00440-019-00947-9
[6] Beck, T., The Friedland-Hayman inequality and Caffarelli’s contraction theorem, J. Math. Phys., Paper No. 101504, 11 pp., 2021 · Zbl 1481.35016 · doi:10.1063/5.0046058
[7] Betta, M. Francesca, A comparison result related to Gauss measure, C. R. Math. Acad. Sci. Paris, 451-456, 2002 · Zbl 1004.35044 · doi:10.1016/S1631-073X(02)02295-1
[8] Brandolini, Barbara, An optimal Poincar\'{e}-Wirtinger inequality in Gauss space, Math. Res. Lett., 449-457, 2013 · Zbl 1286.35052 · doi:10.4310/MRL.2013.v20.n3.a3
[9] Brandolini, Barbara, The equality case in a Poincar\'{e}-Wirtinger type inequality, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 443-464, 2016 · Zbl 1348.35150 · doi:10.4171/RLM/743
[10] Bobkov, S., Extremal properties of half-spaces for log-concave distributions, Ann. Probab., 35-48, 1996 · Zbl 0859.60048 · doi:10.1214/aop/1042644706
[11] Bobkov, S. G., The size of singular component and shift inequalities, Ann. Probab., 416-431, 1999 · Zbl 0946.60008 · doi:10.1214/aop/1022677267
[12] Bobkov, S. G., From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., 1028-1052, 2000 · Zbl 0969.26019 · doi:10.1007/PL00001645
[13] Bogachev, Vladimir I., Gaussian measures, Mathematical Surveys and Monographs, xii+433 pp., 1998, American Mathematical Society, Providence, RI · Zbl 0913.60035 · doi:10.1090/surv/062
[14] Borell, Christer, The Brunn-Minkowski inequality in Gauss space, Invent. Math., 207-216, 1975 · Zbl 0292.60004 · doi:10.1007/BF01425510
[15] Borell, C., Convex set functions in \(d\)-space, Period. Math. Hungar., 111-136, 1975 · Zbl 0307.28009 · doi:10.1007/BF02018814
[16] Borell, Christer, The Ehrhard inequality, C. R. Math. Acad. Sci. Paris, 663-666, 2003 · Zbl 1031.60013 · doi:10.1016/j.crma.2003.09.031
[17] B\"{o}r\"{o}czky, K\'{a}roly J., The log-Brunn-Minkowski inequality, Adv. Math., 1974-1997, 2012 · Zbl 1258.52005 · doi:10.1016/j.aim.2012.07.015
[18] Brascamp, Herm Jan, On extensions of the Brunn-Minkowski and Pr\'{e}kopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, 366-389, 1976 · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[19] Brasco, Lorenzo, On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique, ESAIM Control Optim. Calc. Var., 315-338, 2014 · Zbl 1290.35160 · doi:10.1051/cocv/2013065
[20] de Bruijn, N. G., Asymptotic methods in analysis, xii+200 pp., 1981, Dover Publications, Inc., New York · Zbl 0556.41021
[21] A. Burchard, A short course on rearrangement inequalities, Lecture Notes, 2009.
[22] Caffarelli, Luis A., Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys., 547-563, 2000 · Zbl 0978.60107 · doi:10.1007/s002200000257
[23] Carlen, E. A., On the cases of equality in Bobkov’s inequality and Gaussian rearrangement, Calc. Var. Partial Differential Equations, 1-18, 2001 · Zbl 1009.49029 · doi:10.1007/PL00009921
[24] Chafa\"{\i }, Djalil, Geometric aspects of functional analysis. Vol. I. On Poincar\'{e} and logarithmic Sobolev inequalities for a class of singular Gibbs measures, Lecture Notes in Math., 219-246, [2020] ©2020, Springer, Cham · Zbl 1459.60047 · doi:10.1007/978-3-030-36020-7\_10
[25] Colesanti, Andrea, From the Brunn-Minkowski inequality to a class of Poincar\'{e}-type inequalities, Commun. Contemp. Math., 765-772, 2008 · Zbl 1157.52002 · doi:10.1142/S0219199708002971
[26] Colesanti, Andrea, A characterization of some mixed volumes via the Brunn-Minkowski inequality, J. Geom. Anal., 1064-1091, 2014 · Zbl 1404.52003 · doi:10.1007/s12220-012-9364-7
[27] Colesanti, Andrea, Monotonicity and concavity of integral functionals involving area measures of convex bodies, Commun. Contemp. Math., 1650033, 26 pp., 2017 · Zbl 1371.52002 · doi:10.1142/S0219199716500334
[28] Colesanti, Andrea, The Minkowski problem for torsional rigidity, Indiana Univ. Math. J., 1013-1039, 2010 · Zbl 1217.31001 · doi:10.1512/iumj.2010.59.3937
[29] Colesanti, Andrea, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal., 1120-1139, 2017 · Zbl 1369.52013 · doi:10.1016/j.jfa.2017.04.008
[30] Colesanti, Andrea, The mathematical legacy of Victor Lomonosov-operator theory. A note on the quantitative local version of the log-Brunn-Minkowski inequality, Adv. Anal. Geom., 85-98, 2020, De Gruyter, Berlin · Zbl 1473.52016 · doi:10.1515/9783110656756-006
[31] Cordero-Erausquin, D., The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal., 410-427, 2004 · Zbl 1073.60042 · doi:10.1016/j.jfa.2003.12.001
[32] Cordero-Erausquin, Dario, Geometric aspects of functional analysis. Interpolations, convexity and geometric inequalities, Lecture Notes in Math., 151-168, 2012, Springer, Heidelberg · Zbl 1275.35009 · doi:10.1007/978-3-642-29849-3\_9
[33] Courtade, Thomas A., Stability of the Bakry-\'{E}mery theorem on \(\mathbb{R}^n\), J. Funct. Anal., 108523, 28 pp., 2020 · Zbl 1437.35005 · doi:10.1016/j.jfa.2020.108523
[34] Cheng, Xu, Eigenvalues of the drifted Laplacian on complete metric measure spaces, Commun. Contemp. Math., 1650001, 17 pp., 2017 · Zbl 1360.58022 · doi:10.1142/S0219199716500012
[35] De Philippis, Guido, Rigidity and stability of Caffarelli’s log-concave perturbation theorem, Nonlinear Anal., 59-70, 2017 · Zbl 1359.60050 · doi:10.1016/j.na.2016.10.006
[36] Ding, Zhonghai, A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proc. Amer. Math. Soc., 591-600, 1996 · Zbl 0841.46021 · doi:10.1090/S0002-9939-96-03132-2
[37] Ehrhard, Antoine, Sym\'{e}trisation dans l’espace de Gauss, Math. Scand., 281-301, 1983 · Zbl 0542.60003 · doi:10.7146/math.scand.a-12035
[38] Ehrhard, Antoine, \'{E}l\'{e}ments extr\'{e}maux pour les in\'{e}galit\'{e}s de Brunn-Minkowski gaussiennes, Ann. Inst. H. Poincar\'{e} Probab. Statist., 149-168, 1986 · Zbl 0595.60020
[39] Eskenazis, Alexandros, The dimensional Brunn-Minkowski inequality in Gauss space, J. Funct. Anal., Paper No. 108914, 19 pp., 2021 · Zbl 1456.52011 · doi:10.1016/j.jfa.2020.108914
[40] Evans, Lawrence C., Partial differential equations, Graduate Studies in Mathematics, xxii+749 pp., 2010, American Mathematical Society, Providence, RI · Zbl 1194.35001 · doi:10.1090/gsm/019
[41] Federer, Herbert, Curvature measures, Trans. Amer. Math. Soc., 418-491, 1959 · Zbl 0089.38402 · doi:10.2307/1993504
[42] Gagliardo, Emilio, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili, Rend. Sem. Mat. Univ. Padova, 284-305, 1957 · Zbl 0087.10902
[43] Gardner, R. J., The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.), 355-405, 2002 · Zbl 1019.26008 · doi:10.1090/S0273-0979-02-00941-2
[44] Gardner, Richard J., Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc., 5333-5353, 2010 · Zbl 1205.52002 · doi:10.1090/S0002-9947-2010-04891-3
[45] Gilbarg, David, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, x+401 pp., 1977, Springer-Verlag, Berlin-New York · Zbl 0361.35003
[46] Grisvard, Pierre, Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, xx+410 pp., 2011, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1231.35002 · doi:10.1137/1.9781611972030.ch1
[47] Shenfeld, Yair, The equality cases of the Ehrhard-Borell inequality, Adv. Math., 339-386, 2018 · Zbl 1430.60040 · doi:10.1016/j.aim.2018.04.013
[48] Harrington, Phillip S., Sobolev spaces and elliptic theory on unbounded domains in \(\mathbb{R}^n\), Adv. Differential Equations, 635-692, 2014 · Zbl 1301.46015
[49] Hartman, Philip, On spherical image maps whose Jacobians do not change sign, Amer. J. Math., 901-920, 1959 · Zbl 0094.16303 · doi:10.2307/2372995
[50] Heilman, Steven, Symmetric convex sets with minimal Gaussian surface area, Amer. J. Math., 53-94, 2021 · Zbl 1462.53003 · doi:10.1353/ajm.2021.0000
[51] S. Heilman, Symmetric convex sets with minimal Gaussian surface area, Lecture Notes, 2017.
[52] H\"{o}rmander, Lars, Notions of convexity, Progress in Mathematics, viii+414 pp., 1994, Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0835.32001
[53] Hosle, Johannes, On the \(L_p\)-Brunn-Minkowski and dimensional Brunn-Minkowski conjectures for log-concave measures, J. Geom. Anal., 5799-5836, 2021 · Zbl 1469.52008 · doi:10.1007/s12220-020-00505-z
[54] Ivanisvili, Paata, A boundary value problem and the Ehrhard inequality, Studia Math., 257-293, 2019 · Zbl 1415.42022 · doi:10.4064/sm170730-22-1
[55] Kesavan, S., Symmetrization & applications, Series in Analysis, xii+148 pp., 2006, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1110.35002 · doi:10.1142/9789812773937
[56] Kolesnikov, Alexander V., Riemannian metrics on convex sets with applications to Poincar\'{e} and log-Sobolev inequalities, Calc. Var. Partial Differential Equations, Art. 77, 36 pp., 2016 · Zbl 1355.53031 · doi:10.1007/s00526-016-1018-3
[57] Kolesnikov, Alexander V., Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal., 1680-1702, 2017 · Zbl 1372.53040 · doi:10.1007/s12220-016-9736-5
[58] Kolesnikov, Alexander V., Poincar\'{e} and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Amer. J. Math., 1147-1185, 2018 · Zbl 1408.53047 · doi:10.1353/ajm.2018.0027
[59] Kolesnikov, Alexander V., Geometric aspects of functional analysis. Sharp Poincar\'{e}-type inequality for the Gaussian measure on the boundary of convex sets, Lecture Notes in Math., 221-234, 2017, Springer, Cham · Zbl 1366.60056
[60] Kolesnikov, Alexander V., Local \(L^p\)-Brunn-Minkowski inequalities for \(p<1\), Mem. Amer. Math. Soc., v+78 pp., 2022 · Zbl 1502.52002 · doi:10.1090/memo/1360
[61] Kolesnikov, Alexander V., On the Gardner-Zvavitch conjecture: symmetry in inequalities of Brunn-Minkowski type, Adv. Math., Paper No. 107689, 23 pp., 2021 · Zbl 1479.52014 · doi:10.1016/j.aim.2021.107689
[62] Kolesnikov, Alexander V., On the local version of the Log-Brunn-Minkowski conjecture and some new related geometric inequalities, Int. Math. Res. Not. IMRN, 14427-14453, 2022 · Zbl 1497.52014 · doi:10.1093/imrn/rnab142
[63] Klartag, B., Geometry of log-concave functions and measures, Geom. Dedicata, 169-182, 2005 · Zbl 1099.28002 · doi:10.1007/s10711-004-2462-3
[64] Kohler-Jobin, Marie-Th\'{e}r\`ese, Une m\'{e}thode de comparaison isop\'{e}rim\'{e}trique de fonctionnelles de domaines de la physique math\'{e}matique. I. Une d\'{e}monstration de la conjecture isop\'{e}rim\'{e}trique \(P\lambda^2\geq \pi j^4_0/2\) de P\'{o}lya et Szeg\H{o}, Z. Angew. Math. Phys., 757-766, 1978 · Zbl 0427.73056 · doi:10.1007/BF01589287
[65] Lata\l a, Rafa\l, A note on the Ehrhard inequality, Studia Math., 169-174, 1996 · Zbl 0847.60012 · doi:10.4064/sm-118-2-169-174
[66] Lata\l a, R., Proceedings of the International Congress of Mathematicians, Vol. II. On some inequalities for Gaussian measures, 813-822, 2002, Higher Ed. Press, Beijing · Zbl 1015.60011
[67] Lata\l a, Rafa\l, Gaussian measures of dilatations of convex symmetric sets, Ann. Probab., 1922-1938, 1999 · Zbl 0966.60037 · doi:10.1214/aop/1022677554
[68] Lichnerowicz, Andr\'{e}, Vari\'{e}t\'{e}s riemanniennes \`a tenseur C non n\'{e}gatif, C. R. Acad. Sci. Paris S\'{e}r. A-B, A650-A653, 1970 · Zbl 0208.50003
[69] Lieb, Elliott H., Analysis, Graduate Studies in Mathematics, xxii+346 pp., 2001, American Mathematical Society, Providence, RI · Zbl 0966.26002 · doi:10.1090/gsm/014
[70] Livshyts, Galyna, On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, Trans. Amer. Math. Soc., 8725-8742, 2017 · Zbl 1376.52014 · doi:10.1090/tran/6928
[71] Livshyts, Galyna V., An extension of Minkowski’s theorem and its applications to questions about projections for measures, Adv. Math., 106803, 40 pp., 2019 · Zbl 1429.52004 · doi:10.1016/j.aim.2019.106803
[72] Livshyts, Galyna, Geometric aspects of functional analysis. Maximal surface area of a convex set in \(\mathbb{R}^n\) with respect to log concave rotation invariant measures, Lecture Notes in Math., 355-383, 2014, Springer, Cham · Zbl 1330.52006 · doi:10.1007/978-3-319-09477-9\_23
[73] Livshyts, Galyna, Maximal surface area of a convex set in \(\mathbb{R}^n\) with respect to exponential rotation invariant measures, J. Math. Anal. Appl., 231-238, 2013 · Zbl 1327.49077 · doi:10.1016/j.jmaa.2013.03.014
[74] Livshyts, Galyna V., A universal bound in the dimensional Brunn-Minkowski inequality for log-concave measures, Trans. Amer. Math. Soc., 6663-6680, 2023 · Zbl 1526.52006 · doi:10.1090/tran/8976
[75] L. A. Lyusternik, Die Brunn-Minkowskische Ungleichung f\"ur beliebige messbare Mengen, C. R. Acad. Sci. URSS 8 (1935), 55-58. · JFM 61.0760.03
[76] Massey, William S., Surfaces of Gaussian curvature zero in Euclidean \(3\)-space, Tohoku Math. J. (2), 73-79, 1962 · Zbl 0114.36903 · doi:10.2748/tmj/1178244205
[77] E. Milman, A sharp centro-affine isospectral inequality of Szeg\"o-Weinberger type and the \(L^p\)-Minkowski problem, J. Diff. Geom., To appear. · Zbl 1542.52010
[78] Nayar, Piotr, A note on a Brunn-Minkowski inequality for the Gaussian measure, Proc. Amer. Math. Soc., 4027-4030, 2013 · Zbl 1305.52017 · doi:10.1090/S0002-9939-2013-11609-6
[79] J. Neeman, Gaussian isoperimetry and related topics, Lecture Notes, 2021, http://www.him.uni-bonn.de/fileadmin/him/Lecture_Notes/01-isoperimetric.pdf.
[80] Neeman, Joe, Geometric aspects of functional analysis. Vol. II. An interpolation proof of Ehrhard’s inequality, Lecture Notes in Math., 263-278, [2020] ©2020, Springer, Cham · Zbl 1460.52011
[81] R. O’Donnell, Open problems in analysis of boolean functions, Preprint, 1204.6447v1, 2012.
[82] Paouris, Grigoris, A Gaussian small deviation inequality for convex functions, Ann. Probab., 1441-1454, 2018 · Zbl 1429.60022 · doi:10.1214/17-AOP1206
[83] P\'{o}lya, G., Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, xvi+279 pp., 1951, Princeton University Press, Princeton, NJ · Zbl 0044.38301
[84] Schneider, Rolf, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, xxii+736 pp., 2014, Cambridge University Press, Cambridge · Zbl 1287.52001
[85] van Handel, Ramon, The Borell-Ehrhard game, Probab. Theory Related Fields, 555-585, 2018 · Zbl 1429.60041 · doi:10.1007/s00440-017-0762-4
[86] Sudakov, V. N., Extremal properties of half-spaces for spherically invariant measures, Zap. Nau\v{c}n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 14-24, 165, 1974
[87] Talenti, Giorgio, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 697-718, 1976 · Zbl 0341.35031
[88] V\'{a}zquez, Juan Luis, The porous medium equation, Oxford Mathematical Monographs, xxii+624 pp., 2007, The Clarendon Press, Oxford University Press, Oxford · Zbl 1107.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.