×

Epidemic modeling with heterogeneity and social diffusion. (English) Zbl 1511.92069

Summary: We propose and analyze a family of epidemiological models that extend the classic susceptible-infectious-recovered/removed (SIR)-like framework to account for dynamic heterogeneity in infection risk. The family of models takes the form of a system of reaction-diffusion equations given populations structured by heterogeneous susceptibility to infection. These models describe the evolution of population-level macroscopic quantities \(S\), \(I\), \(R\) as in the classical case coupled with a microscopic variable \(f\), giving the distribution of individual behavior in terms of exposure to contagion in the population of susceptibles. The reaction terms represent the impact of sculpting the distribution of susceptibles by the infection process. The diffusion and drift terms that appear in a Fokker-Planck type equation represent the impact of behavior change both during and in the absence of an epidemic. We first study the mathematical foundations of this system of reaction-diffusion equations and prove a number of its properties. In particular, we show that the system will converge back to the unique equilibrium distribution after an epidemic outbreak. We then derive a simpler system by seeking self-similar solutions to the reaction-diffusion equations in the case of Gaussian profiles. Notably, these self-similar solutions lead to a system of ordinary differential equations including classic SIR-like compartments and a new feature: the average risk level in the remaining susceptible population. We show that the simplified system exhibits a rich dynamical structure during epidemics, including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives and caveats on ways that this family of models can help interpret the non-canonical dynamics of emerging infectious diseases, including COVID-19.

MSC:

92D30 Epidemiology
35K57 Reaction-diffusion equations
35Q84 Fokker-Planck equations

References:

[1] Almeida, L.; Bliman, PA; Nadin, G.; Perthame, B.; Vauchelet, N., Final size and convergence rate for an epidemic in heterogeneous population, Math Models Methods Appl Sci, 31, 1021-1051 (2021) · Zbl 1473.92034 · doi:10.1142/S0218202521500251
[2] Arino, J.; Davis, JR; Hartley, D.; Jordan, R., A multi-species epidemic model with spatial dynamics, Math Med Biol, 22, 2, 129-142 (2005) · Zbl 1076.92045 · doi:10.1093/imammb/dqi003
[3] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commun Partial Differ Equ, 26, 1-2, 43-100 (2001) · Zbl 0982.35113 · doi:10.1081/PDE-100002246
[4] Arthur, RF, Adaptive social contact rates induce complex dynamics during epidemics, PLoS Comput Biol, 17, 2 (2021) · doi:10.1371/journal.pcbi.1008639
[5] Auchincloss, AH; Diez Roux, AV, A new tool for epidemiology: the usefulness of dynamic-agent models in understanding place effects on health, Am J Epidemiol, 168, 1, 1-8 (2008) · doi:10.1093/aje/kwn118
[6] Bakry D (1994) L’hypercontractivité et son utilisation en théorie des semigroupes. Lectures on Probability Theory, pp 1-114
[7] Bakry, D.; Émery, M., Diffusions hypercontractives, Séminaire de probabilités de Strasbourg, 19, 177-206 (1985) · Zbl 0561.60080
[8] Bakry, D.; Gentil, I.; Ledoux, M., Analysis and geometry of Markov diffusion operators Grundlehren der mathematischen Wissenschaften (2014), Cham: Springer, Cham · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9
[9] Béraud, G.; Kazmercziak, S.; Beutels, P.; Levy-Bruhl, D.; Lenne, X.; Mielcarek, N.; Yazdanpanah, Y.; Boëlle, PY; Hens, N.; Dervaux, B., The French connection: the first large population-based contact survey in France relevant for the spread of infectious diseases, PLoS ONE, 10, 7, 1-22 (2015) · doi:10.1371/journal.pone.0133203
[10] Berestycki, H.; Desjardins, B.; Heintz, B.; Oury, JM, Plateaus, rebounds and the effects of individual behaviours in epidemics, Nat Sci Rep, 11, 2045-2322 (2021)
[11] Brauer, F., The Kermack-McKendrick epidemic model revisited, Math Biosci, 198, 2, 119-131 (2005) · Zbl 1090.92042 · doi:10.1016/j.mbs.2005.07.006
[12] Brauer, F., A simple model for behavior change in epidemics, BMC Public Health, 11, 1, S3 (2011) · doi:10.1186/1471-2458-11-S1-S3
[13] Brauer, F., The final size of a serious epidemic, Bull Math Biol, 81, 3, 869-877 (2019) · Zbl 1415.92172 · doi:10.1007/s11538-018-00549-x
[14] Britton, T.; Ball, F.; Trapman, P., A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science, 369, 6505, 846-849 (2020) · Zbl 1478.92180 · doi:10.1126/science.abc6810
[15] Cañizo JA. The Csiszár-Kullback inequality. https://canizo.org/page/28
[16] Courtade, TA; Fathi, M., Stability of the Bakry-Emery theorem on \({\cal{R } }^n\), J Funct Anal, 279, 2 (2020) · Zbl 1437.35005 · doi:10.1016/j.jfa.2020.108523
[17] Csiszár, I., Information-type measures of difference of probability distributions and indirect observations, Studia Sci Math Hungar, 2, 299-318 (1967) · Zbl 0157.25802
[18] Di Domenico, L.; Pullano, G.; Sabbatini, CE; Boëlle, P-Y; Colizza, V., Impact of lockdown on COVID-19 epidemic in Ile-de-France and possible exit strategies, BMC Med, 18, 1, 1-13 (2020) · doi:10.1186/s12916-020-01698-4
[19] Dimarco, G.; Perthame, B.; Toscani, G.; Zanella, M., Kinetic models for epidemic dynamics with social heterogeneity, J Math Biol, 83, 1, 1-32 (2021) · Zbl 1467.92189 · doi:10.1007/s00285-021-01630-1
[20] Dolbeault, J.; Turinici, G., Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model, Math Model Nat Phenom, 15, 36 (2020) · Zbl 1467.92191 · doi:10.1051/mmnp/2020025
[21] Dolbeault, J.; Turinici, G., Social heterogeneity and the COVID-19 lockdown in a multi-group SEIR model, Comput Math Biophys, 9, 1, 14-21 (2021) · Zbl 1472.92209 · doi:10.1515/cmb-2020-0115
[22] Eksin, C.; Paarporn, K.; Weitz, JS, Systematic biases in disease forecasting-the role of behavior change, Epidemics, 27, 96-105 (2019) · doi:10.1016/j.epidem.2019.02.004
[23] Feng, Z., Applications of epidemiological models to public health policymaking: the role of heterogeneity in model predictions (2014), Singapore: World Scientific, Singapore · Zbl 1291.92001 · doi:10.1142/8884
[24] Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Cucunubá Z, Cuomo-Dannenburg G et al (2020) Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand
[25] Frank, TD, Lyapunov and free energy functionals of generalized Fokker-Planck equations, Phys Lett A, 290, 1, 93-100 (2001) · Zbl 0980.82024 · doi:10.1016/S0375-9601(01)00638-7
[26] Ibuka, Y., Social contacts, vaccination decisions and influenza in Japan, J Epidemiol Community Health, 70, 152-167 (2016) · doi:10.1136/jech-2015-205777
[27] Kortessis, N.; Simon, MW; Barfield, M.; Glass, GE; Singer, BH; Holt, RD, The interplay of movement and spatiotemporal variation in transmission degrades pandemic control, Proc Natl Acad Sci, 117, 48, 30104-30106 (2020) · doi:10.1073/pnas.2018286117
[28] Kullback, S., A lower bound for discrimination information in terms of variation (corresp), IEEE Trans Inf Theory, 13, 1, 126-127 (1967) · doi:10.1109/TIT.1967.1053968
[29] Lavine, JS; Bjornstad, ON; Antia, R., Immunological characteristics govern the transition of COVID-19 to endemicity, Science, 371, 6530, 741-745 (2021) · doi:10.1126/science.abe6522
[30] Leung, K., Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong, Nat Sci Rep, 7, 7974 (2017)
[31] Magal, P.; Seydi, O.; Webb, G., Final size of a multigroup sir epidemic model: irreducible and non-irreducible modes of transmission, Math Biosci, 301, 59-67 (2018) · Zbl 1392.92104 · doi:10.1016/j.mbs.2018.03.020
[32] Markowich PA, Villani C (1999) On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis (1999)
[33] Park, SW; Bolker, BM; Funk, S.; Metcalf, CJE; Weitz, JS; Grenfell, BT; Dushoff, J., The importance of the generation interval in investigating dynamics and control of new SARS-CoV-2 variants, J R Soc Interface, 19, 191, 20220173 (2022) · doi:10.1098/rsif.2022.0173
[34] Pinsker, MS, Information and information stability of random variables and processes (1964), Holden-Day, San Francisco: Holden-Day series in time series analysis, Holden-Day, San Francisco · Zbl 0125.09202
[35] Prem, K.; Cook, AR; Jit, M., Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comput Biol, 13, 9 (2017) · doi:10.1371/journal.pcbi.1005697
[36] Prem K, van Zandvoort K, Klepac P, Eggo RM, Davies NG, entre for the mathematical modelling of infectious diseases COVID-19 Working Group, Cook AR, Jit M., Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era, PLoS Comput Biol, 17, 7 (2021) · doi:10.1371/journal.pcbi.1009098
[37] Roques, L.; Bonnefon, O.; Baudrot, V.; Soubeyrand, S.; Berestycki, H., A parsimonious approach for spatial transmission and heterogeneity in the COVID-19 propagation, R Soc Open Sci, 7, 12 (2020) · doi:10.1098/rsos.201382
[38] Rose, C.; Medford, AJ; Goldsmith, CF; Vegge, T.; Weitz, JS; Peterson, AA, Heterogeneity in susceptibility dictates the order of epidemic models, J Theor Biol, 528 (2021) · Zbl 1470.92344 · doi:10.1016/j.jtbi.2021.110839
[39] Stroud, P.; del Valle, S.; Sydoriak, S.; Riese, J.; Minszewski, S., Spatial dynamics of pandemic influenza in a massive artificial society, J Artif Soc Soc Simul, 10, 4, 9 (2007)
[40] Sukumar SR, Nutaro JJ (2012) Agent-based vs. equation-based epidemiological models: a model selection case study. In: 2012 ASE/IEEE international conference on biomedical computing (BioMedCom), pp 74-79
[41] Tkachenko AV, Maslov S, Wang T, Elbana A, Wong GN, Goldenfeld N (2021) Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus, and an endemic state. eLife 10:e68341
[42] Weitz, JS; Park, SW; Eksin, C.; Dushoff, J., Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations, Proc Natl Acad Sci, 117, 51, 32764-32771 (2020) · doi:10.1073/pnas.2009911117
[43] Weitz, JS; Beckett, SJ; Coenen, AR, Modeling shield immunity to reduce COVID-19 epidemic spread, Nat Med, 26, 849-854 (2020) · doi:10.1038/s41591-020-0895-3
[44] Zhang, J., Changes in contact pattern shape the dynamics of the COVID-19 outbreak in China, Science, 368, 1481-1486 (2020) · doi:10.1126/science.abb8001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.