×

Semiparametric estimation based on parametric modeling of the cause-specific hazard ratios in competing risks. (English) Zbl 1030.62082

Summary: This paper is intended as an investigation of estimating cause-specific cumulative hazard and cumulative incidence functions in a competing risks model. The proportional model in which ratios of the cause-specific hazards to the overall hazard are assumed to be constant (independent of time) is a well-known semiparametric model. We are here concerned with relaxation of the proportionality assumption. The set \(C\) of all causes is decomposed into two disjoint subsets of causes as \(C=C_{1}\cup C_{2}\). The relative risk of cause A in the sub-causes \(C_{1}\) can be represented as a function defined by the ratio of the cause-specific hazard of cause A to the sum of cause-specific hazards in the sub-causes \(C_1\). We call this function the risk pattern function of cause A in \(C_1\), and consider a semiparametric model in which risk pattern functions in \(C_1\) are not constant (independent of time) but whose functional forms, except for finite-dimensional parameters, are known.
Based on this model, semiparametric estimators are obtained, and estimated variances of them are derived by delta methods. We investigate asymptotic properties of the semiparametric estimators and compare them with nonparametric estimators. The semiparametric procedure is illustrated with a radiation-exposed mice data set, which represents lifetimes and causes of death of mice exposed to radiation in two different environments.

MSC:

62N02 Estimation in survival analysis and censored data
62G05 Nonparametric estimation
62N01 Censored data models
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] H. Akaike, Information theory and an extension of the maximum likelihood principle, in: B.N. Petrov, F. Csaki (Eds.), Second International Symposium on Information Theory, Akademiai Kiado, Budapest, 1973, pp. 267-281. (Reproduced (1992) in: N.L. Johnson, S. Kotz (Eds.), Breakthroughs in Statistics, Vol. 1, Springer, New York, pp. 610-624).; H. Akaike, Information theory and an extension of the maximum likelihood principle, in: B.N. Petrov, F. Csaki (Eds.), Second International Symposium on Information Theory, Akademiai Kiado, Budapest, 1973, pp. 267-281. (Reproduced (1992) in: N.L. Johnson, S. Kotz (Eds.), Breakthroughs in Statistics, Vol. 1, Springer, New York, pp. 610-624). · Zbl 0283.62006
[2] Aly, E. A.A.; Kochar, S. C.; McKeague, I. W., Some tests for comparing cumulative incidence functions and cause-specific hazard rates, J. Amer. Statist. Assoc., 89, 994-999 (1994) · Zbl 0804.62091
[3] Block, H. W.; Basu, A. P., A continuous bivariate exponential extension, J. Amer. Statist. Assoc., 69, 1031-1037 (1974) · Zbl 0299.62027
[4] Chiang, C. L., Introduction to Stochastic Process in Biostatistics (1968), Wiley: Wiley New York · Zbl 0172.45003
[5] Cox, D. R.; Oakes, D., Analysis of Survival Data (1984), Chapman & Hall: Chapman & Hall London
[6] David, H. A.; Moeschberger, M. L., Theory of Competing Risks (1978), Griffin: Griffin London · Zbl 0434.62076
[7] Dikta, G., On semiparametric random censorship models, J. Statist. Plan. Inference, 66, 253-279 (1998) · Zbl 0927.62101
[8] Fleming, T. R.; Harrington, D. P., Counting Processes and Survival Analysis (1991), Wiley: Wiley New York · Zbl 0727.62096
[9] Gaynor, J. J.; Fener, E. J.; Tan, C. C.; Wu, D. H.; Little, C. R.; Straus, D. J.; Clarkson, B. D.; Brennan, M. F., On the use of cause-specific failure and conditional failure probabilitiesexamples from clinical oncology data, J. Amer. Statist. Assoc., 88, 400-409 (1993) · Zbl 0775.62297
[10] Gill, R. D., Censoring and Stochastic Integrals, Mathematical Centre Tracts, Vol. 124 (1980), Mathematisch Centrum: Mathematisch Centrum Amsterdam · Zbl 0456.62003
[11] Hoel, D. G.; Walburg, H. E., Statistical analysis of survival experiments, J. Natl. Cancer Inst., 49, 361-372 (1972)
[12] Hurvich, C. M.; Tsai, C. L., Regression and time series model selection in small samples, Biometrika, 76, 297-307 (1989) · Zbl 0669.62085
[13] Kalbfleisch, J. D.; Prentice, R. L., The Statistical Analysis of Failure Time Data (1980), Wiley: Wiley New York · Zbl 0504.62096
[14] Kaplan, E. L.; Meier, P., Non-parametric estimation from incomplete observations, J. Amer. Statist. Assoc., 53, 457-481 (1958) · Zbl 0089.14801
[15] Lawless, J. F., Statistical Models and Methods for Lifetime Data (1982), Wiley: Wiley New York · Zbl 0541.62081
[16] Lenglart, E., Relation de domination entre deux processus, Ann. Inst. Henri Poincaré, 13, 171-179 (1977) · Zbl 0373.60054
[17] Marubini, E.; Valsecchi, M. G., Analysing Survival Data from Clinical Trials and Observational Studies (1995), Wiley: Wiley Chichester · Zbl 0837.62090
[18] Prentice, R. L.; Kalbfleisch, J. D.; Peterson, A. V.; Flournoy, N.; Farwell, V. T.; Breslow, N. E., The analysis of failure times in the presence of competing risks, Biometrics, 34, 541-554 (1978) · Zbl 0392.62088
[19] Schwarz, G., Estimating the dimension of a model, Ann. Statist., 6, 461-464 (1978) · Zbl 0379.62005
[20] Seal, H. L., Studies in the history of probability & statistics XXXV. Multiple decrements or competing risks, Biometrika, 64, 429-439 (1977) · Zbl 0375.62096
[21] Stute, W.; Wang, J. L., The jackknife estimate of a Kaplan-Meier integral, Biometrika, 81, 602-606 (1994) · Zbl 0809.62037
[22] Y. Sun, R.C. Tiwari, Comparing cause-specific hazard rates of a competing risks model with censored data, in: H.L. Koul, J.V. Deshpande (Eds.), Analysis of Censored Data, Institute of Mathematical Statistics, California, 1995, pp. 255-270.; Y. Sun, R.C. Tiwari, Comparing cause-specific hazard rates of a competing risks model with censored data, in: H.L. Koul, J.V. Deshpande (Eds.), Analysis of Censored Data, Institute of Mathematical Statistics, California, 1995, pp. 255-270. · Zbl 0876.62103
[23] Suzukawa, A.; Taneichi, N., Estimation of survival function based on modeling of censoring pattern, J. Japan Statist. Soc., 30, 177-195 (2000) · Zbl 0984.62077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.