×

Mixture of transmuted Pareto distribution: properties, applications and estimation under Bayesian framework. (English) Zbl 1453.62357

Summary: Transmuted distributions are flexible skewed families constructed by the induction of one or more additional parameters to a parent distribution. This paper investigates the potential usefulness of a two-component mixture of Transmuted Pareto Distribution (TPaD) under a Bayesian framework assuming type-I right censored sampling. For Bayesian analysis, noninformative as well as informative priors are assumed while three loss functions, namely the squared error loss function (SELF), precautionary loss function (PLF), and quadratic loss function (QLF) are considered to estimate the unknown parameters. Furthermore, Bayesian credible intervals (BCIs) are also discussed in this study. Since the posterior distributions do not have explicit forms, posterior summaries are computed using a Markov Chain Monte Carlo (MCMC) technique. The performance of the Bayes estimators is assessed by their posterior risks assuming different sample sizes and censoring rates. To highlight the practical significance of a two-component mixture of transmuted Pareto distribution (TPaD), a medical data set collected for rental calculi problem is analyzed in this study. Furthermore, annual flood rate data collected at the Floyd River are also discussed in this study.

MSC:

62E15 Exact distribution theory in statistics
62N01 Censored data models
60E05 Probability distributions: general theory
62P12 Applications of statistics to environmental and related topics

Software:

R
Full Text: DOI

References:

[1] Abdel−All, N. H.; Mahmoud, M. A.W.; Abd-Ellah, H. N., Geometrical properties of Pareto distribution, Appl. Math. Comput., 145, 321-339 (2003) · Zbl 1101.62306
[2] Afify, A. Z.; Yousof, H. M.; Butt, N. S.; Hamedani, G. G., The transmuted Weibull-Pareto distribution, Pak. J. Stat., 32, 3, 183-206 (2016)
[3] Ali, S., On the Bayesian estimation of the weighted Lindley distribution, J. Stat. Comput. Simul., 85, 5, 855-880 (2015) · Zbl 1457.62303
[4] Ali, S., Mixture of the inverse Rayleigh distribution:properties and estimation in a Bayesain framework, Appl. Math. Model., 39, 2, 515-530 (2014) · Zbl 1432.62340
[5] Ali, S.; Aslam, M.; Kazmi, S. M.A., Choice of suitable informative prior for the scale parameter of the mixture of Laplace distribution, Electron. J. Appl. Stat. Anal., 6, 1, 32-56 (2013)
[6] Ali, S.; Aslam, M.; Nasir, A.; Kazmi, S. M.A., Scale parameter estimation of the Laplace model using different asymmetric loss functions, Int J Stat Probab, 1, 1, 105-127 (2012)
[7] Ali, S.; Aslam, M.; Kazmi, S. M.A., Improved informative prior for the mixture of Laplace distribution under different loss functions, J. Reliab. Stat. Stud., 4, 2, 57-82 (2011) · Zbl 1247.62080
[8] Arnold, B. C.; Press, S. J., Bayesian estimation and prediction for Pareto data, J. Am. Stat. Assoc., 84, 1079-1084 (1989) · Zbl 0702.62026
[9] Aslam, M.; Tahir, M.; Hussain, Z.; Al-Zahrani, B., A 3- component mixture of Rayleigh distributions: properties and estimation in Bayesian framework, Public Lib. Sci. One, 1-14 (2015)
[10] Aslam, M.; Tahir, M.; Hussain, Z., Reliability analysis of three−component mixture of distributions, Sci. Iran. Trans. E: Ind. Eng., 25, 1768-1781 (2018)
[11] Ateya, S. F., Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data, Stat. Pap., 55, 2, 311-325 (2014) · Zbl 1297.62040
[12] Belloni, A.; Chernozhukov, V., On the computational complexity of MCMC-based estimators in large samples, Ann. Stat., 37, 4, 2011-2055 (2009) · Zbl 1175.65015
[13] Benaicha, H.; Chaker, A., Weibull mixture model for reliability analysis, Int. Rev. Electr. Eng., 9, 5, 986-990 (2014)
[14] Casella, G.; George, E. I., Explaining the Gibbs sampler, Am. Stat., 46, 3, 167-174 (1992)
[15] Chhetri, S. B.; Long, H.; Aryal, G., The beta transmuted Pareto distribution: theory and applications, J. Stat. Appl. Probab., 6, 2, 243-258 (2017)
[16] Doostparast, M.; Akbari, M. G.; Balakrishnan, N., Bayesian analysis for the two- parameter Pareto distribution based on record values and times, J. Stat. Comput. Simul., 81, 11, 1393-1403 (2011) · Zbl 1431.62089
[17] Eberlya, L. E.; Casella, G., Estimating Bayesian credible intervals, J. Stat. Plan. Inference, 112, 115-132 (2003) · Zbl 1032.62023
[18] Fatima, A.; Roohi, A., Transmuted exponentiated Pareto−I distribution, Pak. J. Stat., 32, 1, 63-80 (2015)
[19] Feroze, N.; Aslam, M., Bayesian analysis of doubly censored lifetime data using two−component mixture of Weibull distribution, J. Natl. Sci. Found., 42, 4, 325-334 (2014)
[20] Franz, J., Posterior distribution and loss functions for parameter estimation in Weibull processes, Econ. Qual. Control, 21, 1, 31-42 (2006) · Zbl 1108.62024
[21] Frigessi, A.; Hwang, C. R.; Sheu, S.-. J.; Di Stefano, P., Convergence rates of the Gibbs sampler, the Metropolis algorithm and other single-site updating dynamics, J. R. Stat. Soc. Ser. B (Methodol.), 55, 205-219 (1993) · Zbl 0781.60039
[22] Ismail, S., A simple estimator for the shape parameter of the Pareto distribution with economics and medical applications, J. Appl. Stat., 31, 1, 3-13 (2004) · Zbl 1053.62027
[23] Kaican, L.; Zhi, G., Convergence rate of Gibbs sampler and its application, Sci. China Ser. A: Math., 48, 10, 1430-1439 (2005) · Zbl 1125.60079
[24] Li, L. A.; Sedransk, N., Mixtures of distributions: a topological approach, Ann. Stat., 16, 4, 1623-1634 (1988) · Zbl 0663.62021
[25] Ma, Z.; Lai, Y.; Kleijn, W. B.; Song, Y.; Wang, L.; Guo, J., Variational Bayesian learning for Dirichlet process mixture of inverted Dirichlet distributions in non-Gaussian image feature modeling, IEEE Trans. Neural Netw. Learn. Syst., 30, 2, 449-463 (2019)
[26] Ma, Z.; Xie, J.; Lai, Y.; Taghia, J.; Xue, J.; Guo, J., Insights into multiple/single lower bound approximation for extended variational inference in non-Gaussian structured data modeling, IEEE Trans. Neural Netw. Learn. Syst. (2019)
[27] Ma, Z.; Leijon, A., Bayesian estimation of beta mixture models with variational inference, IEEE Trans. Pattern Anal. Mach. Intell., 33, 11, 2160-2173 (2011)
[28] Mengersen, K. L.; Tweedie, R. L., Rates of convergence of the Hastings and Metropolis algorithms, Ann. Stat, 24, 101-121 (1996) · Zbl 0854.60065
[29] Mendenhall, W.; Hader, R. A., Estimation of parameters of mixed exponentially distributed failure time distributions from censored life test data, Biometrika, 45, 504-520 (1958) · Zbl 0088.12302
[30] Merovci, F.; Puka, L., Transmuted Pareto distribution, ProbStat Forum, 7, 1-11 (2014) · Zbl 1284.62102
[31] Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E., Equations of state calculation by fast computing machines, J. Chem. Phys., 21, 6, 1087-1092 (1953) · Zbl 1431.65006
[32] Metropolis, N.; Ulam, S., The Monte Carlo method, J. Am. Stat. Assoc., 44, 247, 335-341 (1949) · Zbl 0033.28807
[33] Mudholkar, G. S.; Hutson, A. D., The exponentiated Weibull family: some properties and a flood data application, Commun. Stat. - Theory Methods, 25, 12, 3059-3083 (1996) · Zbl 0887.62019
[34] Nadarajah, S.; Kotz, S., Information matrix for a mixture of two Pareto distributions, Iran. J. Sci. Technol. Trans. A, 29, A3, 377-385 (2005) · Zbl 1104.62019
[35] Newcomb, S., A generalized theory of the combination of observations so as to obtain best result, Am. J. Math., 8, 343-366 (1886) · JFM 18.0183.01
[36] Norstrom, J. G., The use of precautionary loss functions in risk analysis, IEEE Trans. Reliab., 45, 1, 400-403 (1996)
[37] Punt, A. E.; Butterworth, D. S., Why do Bayesian and maximum likelihood assessments of the Bering-Chukchi- Beaufort seas stock of bowhead whales differ?, J. Cetacean Res. Manag., 2, 125-133 (2000)
[38] Punt, A. E.; Walker, T. I., Stock assessment and risk analysis for the school shark galeorhinus galeus (Linnaeus) off southern Australia, Mar. Freshwater Res., 49, 719-731 (1998)
[39] Reed, W. J.; Jorgensen, M., The double Pareto−lognormal distribution – a new parametric model for size distributions, Commun. Stat. - Theory Methods, 33, 8, 1733-1753 (2004) · Zbl 1134.62313
[40] Robert, C. P., The Bayesian Choice: From Decision−Theoretic Foundations to Computational Implementation (2007), Springer · Zbl 1129.62003
[41] Roberts, G. O.; Smith, A. F.M., Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms, Stoch. Process Appl., 49, 2, 207-216 (1994) · Zbl 0803.60067
[42] Robert, C. P., Convergence control methods for Markov-chain Monte-Carlo algorithms, Stat. Sci., 10, 231-253 (1995) · Zbl 0955.60526
[43] Roberts, G. O.; Tweedie, R. L., Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms, Biometrika, 83, 95-110 (1996) · Zbl 0888.60064
[44] Rostenthal, J. S., Minorization conditions and convergence-rates for Markov-chain Monte-Carlo, J. Am. Stat. Assoc., 90, 558-566 (1995) · Zbl 0824.60077
[45] R: A Language and Environment for Statistical Computing (2013), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria, URL
[46] Sankaran, P. G.; Nair, M. T., On finite mixture of Pareto distributions, CSA Bull., 57, 225-226 (2005) · Zbl 1170.62315
[47] Shaw, W.T., Buckley, I.R.C. (2009). The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic normal distribution from a rank transmutation map. ArXiv Preprint: 0901.0434v1 [q-fin.ST].
[48] Stein, C., Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean, Ann. Math. Stat., 16, 155-160 (1964) · Zbl 0144.41405
[49] Tahir, M.; Abid, M.; Aslam, M.; Ali, S., Bayesian estimation of the mixture of Burr type-XII distributions using doubly censored data, J. King Saud Univ. - Sci. (2019)
[50] Von Neumann, J., Various techniques used in connection with random digits, Natl. Bureau Stand. Math. Ser., 12, 36-38 (1951)
[51] Zhang, H.; Huang, Y., Finite mixture models and their applications: a review, Aust. Biometr. Biostat., 2, 1, 1-6 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.