×

An oracle-based framework for robust combinatorial optimization. (English) Zbl 1536.90141

Summary: We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem, the algorithm is entirely oracle-based, i.e., our approach only requires a (primal) algorithm for solving the certain problem. It is thus particularly useful in case the certain problem is well-studied but its combinatorial structure cannot be directly exploited in a tailored robust optimization approach, or in situations where the underlying problem is only defined implicitly by a given software. The idea of our algorithm is to solve the convex relaxation of the robust problem by a simplicial decomposition approach, the main challenge being the non-differentiability of the objective function in the case of discrete or polytopal uncertainty. The resulting dual bounds are then used within a tailored branch-and-bound framework for solving the robust problem to optimality. By a computational evaluation, we show that our method outperforms straightforward linearization approaches on the robust minimum spanning tree problem. Moreover, using the Concorde solver for the certain oracle, our approach computes much better dual bounds for the robust traveling salesman problem in the same amount of time.

MSC:

90C17 Robustness in mathematical programming
90C27 Combinatorial optimization
90C26 Nonconvex programming, global optimization

Software:

TSPLIB; Concorde; CPLEX

References:

[1] Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont, MA (2009) · Zbl 1242.90001
[2] Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Belmont, MA (2015) · Zbl 1347.90001
[3] Bertsekas, DP; Huizhen, Yu, A unifying polyhedral approximation framework for convex optimization, SIAM J. Optim., 21, 1, 333-360 (2011) · Zbl 1218.90154 · doi:10.1137/090772204
[4] Bettiol, E.; Létocart, L.; Rinaldi, F.; Traversi, E., A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs, Comput. Optim. Appl., 75, 2, 321-360 (2020) · Zbl 1432.90099 · doi:10.1007/s10589-019-00151-4
[5] Buchheim, C., A note on the nonexistence of oracle-polynomial algorithms for robust combinatorial optimization, Discret. Appl. Math., 285, 591-593 (2020) · Zbl 1450.90039 · doi:10.1016/j.dam.2020.07.002
[6] Buchheim, C.; Kurtz, J., Min-max-min robust combinatorial optimization, Math. Program., 163, 1-2, 1-23 (2017) · Zbl 1365.90224 · doi:10.1007/s10107-016-1053-z
[7] Buchheim, C.; Kurtz, J., Robust combinatorial optimization under convex and discrete cost uncertainty, EURO J. Comput. Optim., 6, 3, 211-238 (2018) · Zbl 1417.90125 · doi:10.1007/s13675-018-0103-0
[8] Buchheim, C.; De Santis, M., An active set algorithm for robust combinatorial optimization based on separation oracles, Math. Program. Comput., 11, 4, 755-789 (2019) · Zbl 1432.90108 · doi:10.1007/s12532-019-00160-8
[9] Buchheim, C.; De Santis, M.; Rinaldi, F.; Trieu, L., A Frank-Wolfe based branch-and-bound algorithm for mean-risk optimization, J. Global Optim., 70, 3, 625-644 (2018) · Zbl 1382.90057 · doi:10.1007/s10898-017-0571-4
[10] Concorde TSP solver. https://www.math.uwaterloo.ca/tsp/concorde/index.html
[11] Dolan, ED; More, JJ, Benchmarking optimization software with performance profiles, Math. Progr., 91, 201-213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
[12] Fischetti, M.; Monaci, M., Cutting plane versus compact formulations for uncertain (integer) linear programs, Math. Progr. Comput. (2012) · Zbl 1275.90046 · doi:10.1007/s12532-012-0039-y
[13] Hearn, Donald W, Lawphongpanich, S., Ventura, Jose A.: Restricted simplicial decomposition: Computation and extensions. In: Computation Mathematical Programming, pp 99-118. Springer, (1987). doi:10.1007/BFb0121181 · Zbl 0636.90027
[14] Holloway, CA, An extension of the frank and wolfe method of feasible directions, Math. Program., 6, 1, 14-27 (1974) · Zbl 0283.90042 · doi:10.1007/BF01580219
[15] IBM ILOG CPLEX Optimizer, (2021). https://www.ibm.com/it-it/analytics/cplex-optimizer
[16] Kämmerling, N.; Kurtz, J., Oracle-based algorithms for binary two-stage robust optimization, Comput. Optim. Appl., 77, 2, 539-569 (2020) · Zbl 1466.90064 · doi:10.1007/s10589-020-00207-w
[17] Kouvelis, P.; Gang, Y., Robust Discrete Optimization and its Applications (1996), Berlin: Springer, Berlin
[18] Kruskal, JB, On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedi. Am. Math. Soc., 7, 1, 48-50 (1956) · Zbl 0070.18404 · doi:10.2307/2033241
[19] Kurtz, J.: New complexity results and algorithms for min-max-min robust combinatorial optimization. arXiv:2106.03107, (2021)
[20] Lan, G., First-order and Stochastic Optimization Methods for Machine Learning (2020), New York: Springer Nature, New York · Zbl 1442.68003 · doi:10.1007/978-3-030-39568-1
[21] Larsson, T.; Patriksson, M., Simplicial decomposition with disaggregated representation for the traffic assignment problem, Transp. Sci., 26, 1, 4-17 (1992) · Zbl 0764.90033 · doi:10.1287/trsc.26.1.4
[22] Mutapcic, A.; Boyd, S., Cutting-set methods for robust convex optimization with pessimizing oracles, Optim. Methods Softw., 24, 3, 381-406 (2009) · Zbl 1173.90502 · doi:10.1080/10556780802712889
[23] TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95 · Zbl 0775.90293
[24] Ventura, JA; Hearn, DW, Restricted simplicial decomposition for convex constrained problems, Math. Program., 59, 1, 71-85 (1993) · Zbl 0801.90092 · doi:10.1007/BF01581238
[25] Von Hohenbalken, B., Simplicial decomposition in nonlinear programming algorithms, Math. Program., 13, 1, 49-68 (1977) · Zbl 0362.90086 · doi:10.1007/BF01584323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.