×

Arbitrarily high-order energy-preserving schemes for the Zakharov-Rubenchik equations. (English) Zbl 1512.65187

In this paper, the authors present a novel class of high-order energy-preserving schemes for solving the Zakharov-Rubenchik equations. The main idea of the scheme is first to introduce an quadratic auxiliary variable to transform the Hamiltonian energy into a modified quadratic energy and the original system is then reformulated into an equivalent system which satisfies the mass, modified energy as well as two linear invariants. The symplectic Runge-Kutta method in time, together with the Fourier pseudo-spectral method in space is employed to compute the solution of the reformulated system. The main benefit of the proposed schemes is that it can achieve arbitrarily high-order accurate in time and conserve the three invariants: mass, Hamiltonian energy and two linear invariants. In addition, an efficient fixed-point iteration is proposed to solve the resulting nonlinear equations of the proposed schemes. Several experiments are addressed to validate the theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
47H10 Fixed-point theorems
35Q55 NLS equations (nonlinear Schrödinger equations)

Software:

LIMbook

References:

[1] Barletti, L.; Brugnano, L.; Caccia, GF; Iavernaro, F., Energy-conserving methods for the nonlinear Schrödinger equation, Appl. Math. Comput., 318, 3-18 (2018) · Zbl 1426.65202
[2] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), Boca Raton: Chapman et Hall/CRC, Boca Raton · Zbl 1335.65097 · doi:10.1201/b19319
[3] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math., 5, 17-37 (2010) · Zbl 1432.65182
[4] Calvo, M.; Iserles, A.; Zanna, A., Numerical solution of isospectral flows, Math. Comp., 66, 1461-1486 (1997) · Zbl 0907.65067 · doi:10.1090/S0025-5718-97-00902-2
[5] Chen, J.; Qin, M., Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electr. Trans. Numer. Anal., 12, 193-204 (2001) · Zbl 0980.65108
[6] Chen, Y.; Gong, Y.; Hong, Q.; Wang, C., A novel class of energy-preserving Runge-Kutta methods for the Korteweg-de Vries equation, Numer. Math. Theor. Meth. Appl., 15, 768-792 (2022) · Zbl 1513.65402 · doi:10.4208/nmtma.OA-2021-0172
[7] Cohen, D.; Hairer, E., Linear energy-preserving integrators for Poisson systems, BIT, 51, 91-101 (2011) · Zbl 1216.65175 · doi:10.1007/s10543-011-0310-z
[8] Cooper, GJ, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal., 7, 1-13 (1987) · Zbl 0624.65057 · doi:10.1093/imanum/7.1.1
[9] Cordero, J., Supersonic limit for the Zakharov-Rubenchik system, J. Differ. Equ., 261, 5260-5288 (2016) · Zbl 1347.35089 · doi:10.1016/j.jde.2016.07.022
[10] Cui, J.; Wang, Y.; Jiang, C., Arbitrarily high-order structure-preserving schemes for the Gross-Pitaevskii equation with angular momentum rotation, Comput. Phys. Commun., 261 (2021) · Zbl 07690841 · doi:10.1016/j.cpc.2020.107767
[11] Gong, Y.; Cai, J.; Wang, Y., Multi-symplectic Fourier pseudospectral method for the Kawahara equation, Commun. Comput. Phys., 16, 35-55 (2014) · Zbl 1388.65119 · doi:10.4208/cicp.090313.041113a
[12] Gong, Y.; Hong, Q.; Wang, C.; Wang, Y., Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation based on the quadratic auxiliary variable approach, Adv. Appl. Math. Mech. (2022) · Zbl 1524.65650 · doi:10.4208/aamm.OA-2022-0188
[13] Gong, Y.; Zhao, J.; Wang, Q., Arbitrarily high-order linear energy stable schemes for gradient flow models, J. Comput. Phys., 419 (2020) · Zbl 07507221 · doi:10.1016/j.jcp.2020.109610
[14] Hairer, E., Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5, 73-84 (2010) · Zbl 1432.65185
[15] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Berlin: Springer-Verlag, Berlin · Zbl 1094.65125
[16] Ji, B.; Zhang, L.; Zhou, X., Conservative compact difference scheme for the Zakharov-Rubenchik equations, Int. J. Comput. Math., 96, 537-556 (2019) · Zbl 1499.65397 · doi:10.1080/00207160.2018.1437261
[17] Jiang, C.; Cui, J.; Qian, X.; Song, S., High-order linearly implicit structure-preserving exponential integrators for the nonlinear Schrödinger equation, J. Sci. Comput., 90, 66 (2022) · Zbl 1481.65134 · doi:10.1007/s10915-021-01739-x
[18] Jiang, C., Qian, C., Song, S., Zheng. C.: Arbitrary high-order structure-preserving schemes for the generalized Rosenau-type equation (2022). arXiv:2205.10241
[19] Jiang, C.; Wang, Y.; Gong, Y., Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation, Appl. Numer. Math., 151, 85-97 (2020) · Zbl 1439.37079 · doi:10.1016/j.apnum.2019.12.016
[20] Li, H.; Wang, Y.; Qin, M., A sixth order averaged vector field method, J. Comput. Math., 34, 479-498 (2016) · Zbl 1374.65206 · doi:10.4208/jcm.1601-m2015-0265
[21] Li, Y.; Wu, X., General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs, J. Comput. Phys., 301, 141-166 (2015) · Zbl 1349.65518 · doi:10.1016/j.jcp.2015.08.023
[22] Li, Y.; Wu, X., Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems, SIAM J. Numer. Anal., 54, 2036-2059 (2016) · Zbl 1342.65231 · doi:10.1137/15M1032752
[23] Linares, F.; Matheus, C., Well-posedness for the 1D Zakharov-Rubenchik system, Adv. Differ. Eq., 14, 261-288 (2009) · Zbl 1165.35448
[24] Mei, L.; Huang, L.; Wu, X., Energy-preserving exponential integrators of arbitrarily high order for conservative or dissipative systems with highly oscillatory solutions, J. Comput. Phys., 442 (2021) · Zbl 07513793 · doi:10.1016/j.jcp.2021.110429
[25] Miyatake, Y.; Butcher, JC, A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems, SIAM J. Numer. Anal., 54, 1993-2013 (2016) · Zbl 1342.65232 · doi:10.1137/15M1020861
[26] Oliveira, F., Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Phys. D., 175, 220-240 (2003) · Zbl 1006.35084 · doi:10.1016/S0167-2789(02)00722-4
[27] Oliveira, F., Adiabatic limit of the Zakharov-Rubenchik equation, Rep. Math. Phys., 61, 13-27 (2008) · Zbl 1141.35055 · doi:10.1016/S0034-4877(08)00006-2
[28] Oliveira, F.: Stability of solutions of the Zakharov-Rubenchik equation. In: Waves And Stability In Continuous Media (2006). doi:10.1142/9789812773616_0054 · Zbl 1345.76119
[29] Oruç, Ö., A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov-Rubenchik equations, Appl. Math. Comput., 394 (2021) · Zbl 1508.65145
[30] Ponce, G.; Saut, JC, Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system, Discret. Contin. Dyn. Syst., 13, 818-852 (2005) · Zbl 1079.35096 · doi:10.3934/dcds.2005.13.811
[31] Quispel, GRW; McLaren, DI, A new class of energy-preserving numerical integration methods, J. Phys. A Math. Theor., 41 (2008) · Zbl 1132.65065 · doi:10.1088/1751-8113/41/4/045206
[32] Sanz-Serna, JM, Runge-Kutta schemes for Hamiltonian systems, BIT, 28, 877-883 (1988) · Zbl 0655.70013 · doi:10.1007/BF01954907
[33] Sanz-Serna, JM; Verwer, JG, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal., 6, 25-42 (1986) · Zbl 0593.65087 · doi:10.1093/imanum/6.1.25
[34] Shen, J.; Tang, T., Spectral and High-Order Methods with Applications (2006), Beijing: Science Press, Beijing · Zbl 1234.65005
[35] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient, J. Comput. Phys., 353, 407-416 (2018) · Zbl 1380.65181 · doi:10.1016/j.jcp.2017.10.021
[36] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61, 474-506 (2019) · Zbl 1422.65080 · doi:10.1137/17M1150153
[37] Tang, W.; Sun, Y., Time finite element methods: a unified framework for numerical discretizations of ODEs, Appl. Math. Comput., 219, 2158-2179 (2012) · Zbl 1291.65203
[38] Tapley, BK, Geometric integration of ODEs using multiple quadratic auxiliary variables, SIAM J. Sci. Comput., 44, A2651-A2668 (2022) · Zbl 1497.65256 · doi:10.1137/21M1442644
[39] Wang, B.; Jiang, Y., Optimal convergence and long-time conservation of exponential integration for schrödinger equations in a normal or highly oscillatory regime, J. Sci. Comput., 90, 1-31 (2022) · Zbl 07488706 · doi:10.1007/s10915-022-01774-2
[40] Yang, X.; Zhao, J.; Wang, Q., Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333, 104-127 (2017) · Zbl 1375.82121 · doi:10.1016/j.jcp.2016.12.025
[41] Zakharov, VE; Rubenchik, AM, Nonlinear interaction between high and low frequency waves, Prikl. Mat. Techn. Fiz., 5, 84-89 (1972)
[42] Zhang, F.; Pérez-García, VM; Vázquez, L., Numerical simulation of nonlinear Schröinger systems: a new conservative scheme, Appl. Math. Comput., 71, 165-177 (1995) · Zbl 0832.65136
[43] Zhang, G., Jiang, C.: Arbitrary high-order structure-preserving methods for the quantum Zakharov system. (2022) arXiv:2202.13052
[44] Zhao, X.; Li, Z., Numerical methods and simulations for the dynamics of one-dimensional Zakharov-Rubenchik equations, J. Sci. Comput., 59, 412-438 (2014) · Zbl 1306.65248 · doi:10.1007/s10915-013-9768-y
[45] Zhou, X.; Wang, T.; Zhang, L., Two numerical methods for the Zakharov-Rubenchik equations, Adv. Comput. Math., 45, 1163-1184 (2019) · Zbl 1415.65239 · doi:10.1007/s10444-018-9651-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.