×

Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy. (English) Zbl 1429.92081

Summary: The present work highlights the attempt to develop a two-dimensional mathematical modelling of thermal characteristics in malignant tissues under a regional hyperthermia therapy based on the bi-dimensional local thermal non-equilibrium bioheat model. In the arena of biological heat transfer, a local thermal non-equilibrium model is preferred over a local thermal equilibrium approach, as skin tissues are a combination of highly non-uniform non-homogeneous structure of fluid and solid media (porous structure). The solution of the thermal response has been determined analytically by employing a ‘hybrid scheme’ composed of ‘shift of variables’ and ‘finite integral transform’ with the therapeutic boundary conditions and actual local coordinates dependent on the initial condition. The thermal behavioural study has been conducted with the influence of oscillating and constant heat flux imposed on the exposed surface of the diseased tissue. The results have been validated with the published experimental work. From the research output, it has been noticed that the sinusoidal therapeutic heat flux is better for the longer time of treatment in comparison with the constant heat flux heating. The treatment protocols of regional hyperthermia suggest that the size of the affected tissue (or organ) is larger in comparison with the localized hyperthermia. Hence, the multi-dimensional modelling should give better glimpse of results than the 1-D form of analysis. From the constructed 2-D thermal contours, it may be noted under the regional hyperthermia circumstance that the heat propagation in the living tissue is in two-directional nature, and thus 2-D analysis is necessary for predicting an accurate temperature response. The present analysis also highlights that a temperature range of 38–44\(^\circ\text{C}\) is possible to maintain in a prolonged therapeutic exposure time instead of maintaining \(50^\circ\text{C}\) for 30 min described in the existing literature. Hence, this positive aspect obtained in the present work can avoid the collateral damage of healthy tissues in human bodies during the regional hyperthermia therapy.

MSC:

92C50 Medical applications (general)
Full Text: DOI

References:

[1] van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13(8), 1173-1184 (2002) · doi:10.1093/annonc/mdf280
[2] Habash, R.W.Y., Bansal, R., Krewski, D., Alhafid, H.T.: Thermal therapy, part 2: hyperthermia techniques. Crit. Rev. Biomed. Eng. 34(6), 491-542 (2006) · doi:10.1615/CritRevBiomedEng.v34.i6.30
[3] Mallorya, M., Goginenib, E., Jonesc, G.C., Greerd, L., Simone II, C.B.: Therapeutic hyperthermia: the old, the new, and the upcoming. Crit. Rev. Oncol./Hematol. 97, 56-64 (2016) · doi:10.1016/j.critrevonc.2015.08.003
[4] Xu, F., Lu, T.J., Seffen, K.A., Ng, E.Y.K.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62, 50801-50835 (2009) · doi:10.1115/1.3124646
[5] Prasad, R., Kumar, R., Mukhopadhyay, S.: Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source. Acta Mech. 217, 243-256 (2010) · Zbl 1398.74173 · doi:10.1007/s00707-010-0389-3
[6] Xuan, Y., Roetzel, W.: Bioheat transfer equation of human thermal system. Chem. Eng. Technol. 20, 268-276 (1997) · doi:10.1002/ceat.270200407
[7] Roetzel, W., Xuan, Y.: Transient response of human limb to an external stimulus. Int. J. Heat Mass Transf. 41(1), 229-239 (1998) · Zbl 0917.76103 · doi:10.1016/S0017-9310(96)00160-3
[8] Shivakumara, I.S., Ravisha, M., Ng, C.-O., Varun, V.L.: Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid. Acta Mech. 226, 3763-3779 (2015) · Zbl 1401.76142 · doi:10.1007/s00707-015-1402-7
[9] Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735-1749 (2001) · Zbl 1091.76567 · doi:10.1016/S0017-9310(00)00217-9
[10] Khaled, A.-R.A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989-5003 (2003) · Zbl 1121.76521 · doi:10.1016/S0017-9310(03)00301-6
[11] Nakayama, A., Kuwahara, F.: A general bioheat transfer model based on theory of porous media. Int. J. Heat Mass Transf. 51, 3190-3199 (2008) · Zbl 1143.80323 · doi:10.1016/j.ijheatmasstransfer.2007.05.030
[12] Mahjoob, S., Vafai, K.: Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. Int. J. Heat Mass Transf. 52, 1608-1618 (2009) · Zbl 1157.80353 · doi:10.1016/j.ijheatmasstransfer.2008.07.038
[13] Yuan, P.: Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy. Int. J. Heat Mass Transf. 52, 1734-1740 (2009) · Zbl 1157.80380 · doi:10.1016/j.ijheatmasstransfer.2008.09.033
[14] Zhang, Y.: Generalized dual-phase lag bioheat equations based on non-equilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52, 4829-4834 (2009) · Zbl 1176.80054 · doi:10.1016/j.ijheatmasstransfer.2009.06.007
[15] Afrin, N., Zhou, J., Zhang, Y., Tzou, D.Y., Chen, J.K.: Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Num. Heat Transf. A Appl. 61(7), 483-501 (2012) · doi:10.1080/10407782.2012.667648
[16] Yuan, P., Yang, C.-S., Liu, S.-F.: Temperature analysis of a biological tissue during hyperthermia therapy in the thermal non-equilibrium porous model. Int. J. Therm. Sci. 78, 124-131 (2014) · doi:10.1016/j.ijthermalsci.2013.12.006
[17] Liu, K.-C., Chen, H.-T.: Analysis of the bioheat transfer problem with pulse boundary heat flux using a generalized dual-phase-lag model. Int. Comm. Heat Mass Transf. 65, 31-36 (2015) · doi:10.1016/j.icheatmasstransfer.2015.04.004
[18] Hooshmand, P., Moradi, A., Khezry, B.: Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214-223 (2015) · doi:10.1016/j.ijthermalsci.2014.12.004
[19] Jasiński, M., Majchrzak, E., Turchan, L.: Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation. Appl. Math. Model. 40, 750-762 (2016) · Zbl 1446.92014 · doi:10.1016/j.apm.2015.10.025
[20] Liu, K.-C., Chen, Y.-S.: Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. Int. J. Therm. Sci. 103, 1-9 (2016) · doi:10.1016/j.ijthermalsci.2015.12.005
[21] Monte, F.D., Haji-Sheikh, A.: Bio-heat diffusion under local thermal non-equilibrium conditions using dual-phase lag-based Green’s functions. Int. J. Heat Mass Transf. 113, 1291-1305 (2017) · doi:10.1016/j.ijheatmasstransfer.2017.06.006
[22] Xu, F., Lu, T.: Introduction to Skin Biothermomechanics and Thermal Pain. Science Press Beijing and Springer-Verlag, London, New York, Berlin, Heidelberg (2011) · doi:10.1007/978-3-642-13202-5
[23] Dutta, J., Kundu, B.: A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments. J. Therm. Biol. 66, 33-48 (2017) · doi:10.1016/j.jtherbio.2017.03.015
[24] Dutta, J., Kundu, B.: Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J. Therm. Biol. 71, 41-51 (2018) · doi:10.1016/j.jtherbio.2017.10.012
[25] Dutta, J., Kundu, B.: Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition. Heat Mass Transf. 54, 3199-3217 (2018) · doi:10.1007/s00231-018-2360-0
[26] Minkowycz, W.J., Haji-Sheikh, A., Vafai, K.: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42, 3373-3385 (1999) · Zbl 0956.76090 · doi:10.1016/S0017-9310(99)00043-5
[27] Kumar, S., Srivastava, A.: Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer. Appl. Math. Model. 52, 378-403 (2017) · Zbl 1480.80021 · doi:10.1016/j.apm.2017.05.041
[28] Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22, 1821-1827 (2009) · Zbl 1182.35214 · doi:10.1016/j.aml.2009.07.003
[29] Cotta, R.M., Cotta, B.P., Naveira-Cotta, C.P., Cotta-Pereira, G.: Hybrid integral transforms analysis of the bioheat equation with variable properties. Int. J. Therm. Sci. 49, 1510-1516 (2010) · doi:10.1016/j.ijthermalsci.2010.04.019
[30] Hahn, D.W., Özisik, M.N.: Heat Conduction. Wiley, New Jersey (2012) · doi:10.1002/9781118411285
[31] Kundu, B.: Exact analysis for propagation of heat in a biological tissue subject to different surface conditions for therapeutic applications. Appl. Math. Comput. 285, 204-216 (2016) · Zbl 1410.74047
[32] Arpaci, V.S.: Conduction Heat Transfer. Addison-Wesley, Boston (1996)
[33] URL: https://www.cancer.org/. Last accessed on 23rd Nov 2018
[34] Ware, M.J., Nguyen, L.P., Law, J.J., Krzykawska-Serda, M., Taylor, K.M., Cao, H.S.T., Anderson, A.O., Pulikkathara, M., Newton, J.M., Ho, J.C., Hwang, R., Rajapakshe, K., Coarfa, C., Huang, S., Edwards, D., Curley, S.A., Corr, S.J.: A new mild hyperthermia device to treat vascular involvement in cancer surgery. Sci. Rep. (Nature) (2017). https://doi.org/10.1038/s41598-017-10508-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.