×

Dynamic stability of electric power grids: tracking the interplay of the network structure, transmission losses, and voltage dynamics. (English) Zbl 07872796

Chaos 32, No. 5, Article ID 053117, 18 p. (2022); erratum ibid. 34, No. 7, Article ID 079901, 2 p. (2024).

MSC:

34Cxx Qualitative theory for ordinary differential equations
34Dxx Stability theory for ordinary differential equations
05Cxx Graph theory

References:

[1] Sims, R.et al., “Integration of renewable energy into present and future energy systems,” in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, edited by O. Edenhofer et al. (Cambridge University Press, Cambridge, 2011), pp. 609-706.
[2] Milano, F., Dörfler, F., Hug, G., Hill, D. J., and Verbič, G., “Foundations and challenges of low-inertia systems (invited paper),” in 2018 Power Systems Computation Conference (PSCC) (IEEE, 2018), pp. 1-25.
[3] Schäfer, B.; Witthaut, D.; Timme, M.; Latora, V., Dynamically induced cascading failures in power grids, Nat. Commun., 9, 378, 2018 · doi:10.1038/s41467-017-02785-6
[4] Taher, H.; Olmi, S.; Schöll, E., Enhancing power grid synchronization and stability through time-delayed feedback control, Phys. Rev. E, 100, 062306, 2019 · doi:10.1103/PhysRevE.100.062306
[5] Böttcher, Ph. C.; Otto, A.; Kettemann, S.; Agert, C., Time delay effects in the control of synchronous electricity grids, Chaos, 30, 013122, 2020 · Zbl 1431.34062 · doi:10.1063/1.5122738
[6] Markovic, U.; Stanojev, O.; Aristidou, P.; Vrettos, E.; Callaway, D.; Hug, G., Understanding small-signal stability of low-inertia systems, IEEE Trans. Power Syst., 36, 3997-4017, 2021 · doi:10.1109/TPWRS.2021.3061434
[7] Farmer, W. J.; Rix, A. J., Impact of continuous stochastic and spatially distributed perturbations on power system frequency stability, Electr. Power Syst. Res., 201, 107536, 2021 · doi:10.1016/j.epsr.2021.107536
[8] Farmer, W. J. and Rix, A. J., “Analysing the power system frequency dynamics subject to continuous spatial-temporal fluctuations,” in 2021 4th Asia Conference on Energy and Electrical Engineering (ACEEE) (IEEE, 2021), pp. 24-28.
[9] Rydin Gorjão, L.; Schäfer, B.; Witthaut, D.; Beck, C., Spatio-temporal complexity of power-grid frequency fluctuations, New J. Phys., 23, 073016, 2021 · doi:10.1088/1367-2630/ac08b3
[10] Machowski, J.; Lubosny, Z.; Bialek, J. W.; Bumby, J. R., Power System Dynamics: Stability and Control, 2020, John Wiley & Sons: John Wiley & Sons, New York
[11] Lasseter, R. H. and Piagi, P., “Microgrid: A conceptual solution,” in IEEE Power Electronics Specialists Conference (IEEE, 2004), Vol. 6, pp. 4285-4291.
[12] Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodriguez, P., Control of power converters in AC microgrids, IEEE Trans. Power Electron., 27, 4734-4749, 2012 · doi:10.1109/TPEL.2012.2199334
[13] Guo, F.; Wen, C.; Song, Y.-D., Distributed Control and Optimization Technologies in Smart Grid Systems, 214, 2017, CRC Press: CRC Press, Boca Raton, FL
[14] Tayab, U. B.; Roslan, M. A. B.; Hwai, L. J.; Kashif, M., A review of droop control techniques for microgrid, Renew. Sust. Energ. Rev., 76, 717-727, 2017 · doi:10.1016/j.rser.2017.03.028
[15] Dörfler, F., Bolognani, S., Simpson-Porco, J. W., and Grammatico, S., “Distributed control and optimization for autonomous power grids,” in 2019 18th European Control Conference (ECC) (IEEE, 2019), pp. 2436-2453.
[16] Rohden, M.; Sorge, A.; Witthaut, D.; Timme, M., Impact of network topology on synchrony of oscillatory power grids, Chaos, 24, 013123, 2014 · Zbl 1374.05220 · doi:10.1063/1.4865895
[17] Farokhian Firuzi, M.; Roosta, A.; Gitizadeh, M., Stability analysis and decentralized control of inverter-based AC microgrid, Prot. Control Mod. Power Syst., 4, 78, 2019 · doi:10.1186/s41601-019-0120-x
[18] Coletta, T.; Jacquod, P., Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids, Phys. Rev. E, 93, 032222, 2016 · doi:10.1103/PhysRevE.93.032222
[19] Pagnier, L.; Jacquod, Ph., Optimal placement of inertia and primary control: A matrix perturbation theory approach, IEEE Access, 7, 145889-145900, 2019 · doi:10.1109/ACCESS.2019.2945475
[20] Tumash, L.; Olmi, S.; Schöll, E., Stability and control of power grids with diluted network topology, Chaos, 29, 123105, 2019 · Zbl 1429.34059 · doi:10.1063/1.5111686
[21] Tyloo, M.; Jacquod, Ph., Primary control effort under fluctuating power generation in realistic high-voltage power networks, IEEE Control Syst. Lett., 5, 929-934, 2021 · doi:10.1109/LCSYS.2020.3006966
[22] Tyloo, M.; Jacquod, Ph., Global robustness versus local vulnerabilities in complex synchronous networks, Phys. Rev. E, 100, 032303, 2019 · doi:10.1103/PhysRevE.100.032303
[23] Hellmann, F.; Schultz, P.; Jaros, P.; Levchenko, R.; Kapitaniak, T.; Kurths, J.; Maistrenko, Y., Network-induced multistability through lossy coupling and exotic solitary states, Nat. Commun., 11, 2005, 2020 · doi:10.1038/s41467-020-14417-7
[24] Thümler, M., Zhang, X., and Timme, M., arXiv:2111.15590 (2021).
[25] He, M.; He, W.; Hu, J.; Yuan, X.; Zhan, M., Nonlinear analysis of a simple amplitude-phase motion equation for power-electronics-based power system, Nonlinear Dyn., 95, 1965-1976, 2019 · doi:10.1007/s11071-018-4671-6
[26] Qiu, Q.; Ma, R.; Kurths, J.; Zhan, M., Swing equation in power systems: Approximate analytical solution and bifurcation curve estimate, Chaos, 30, 013110, 2020 · Zbl 1431.34068 · doi:10.1063/1.5115527
[27] Schiffer, J.; Ortega, R.; Astolfi, A.; Raisch, J.; Sezi, T., Conditions for stability of droop-controlled inverter-based microgrids, Automatica, 50, 2457-2469, 2014 · Zbl 1301.93145 · doi:10.1016/j.automatica.2014.08.009
[28] Schiffer, J.; Seel, T.; Raisch, J.; Sezi, T., Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control, IEEE Trans. Control Syst. Technol., 24, 96-109, 2016 · doi:10.1109/TCST.2015.2420622
[29] Schiffer, J.; Dörfler, F.; Fridman, E., Robustness of distributed averaging control in power systems: Time delays & dynamic communication topology, Automatica, 80, 261-271, 2017 · Zbl 1370.93207 · doi:10.1016/j.automatica.2017.02.040
[30] Dörfler, F.; Bullo, F., Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators, SIAM J. Control Optim., 50, 1616-1642, 2012 · Zbl 1264.34105 · doi:10.1137/110851584
[31] Dörfler, F.; Chertkov, M.; Bullo, F., Synchronization in complex oscillator networks and smart grids, Proc. Natl. Acad. Sci. U.S.A., 110, 2005-2010, 2013 · Zbl 1292.94185 · doi:10.1073/pnas.1212134110
[32] Krause, P. C.; Wasynczuk, O.; Sudhoff, S. D.; Pekarek, S., Analysis of Electric Machinery and Drive Systems, 2013, Wiley Online Library
[33] Sauer, P. W.; Pai, M. A.; Chow, J. H., Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox, 2017, Prentice Hall: Prentice Hall, Upper Saddle River, NJ
[34] Schmietendorf, K.; Peinke, J.; Friedrich, R.; Kamps, O., Self-organized synchronization and voltage stability in networks of synchronous machines, Eur. Phys. J. Spec. Top., 223, 2577-2592, 2014 · doi:10.1140/epjst/e2014-02209-8
[35] Auer, S.; Kleis, K.; Schultz, P.; Kurths, J.; Hellmann, F., The impact of model detail on power grid resilience measures, Eur. Phys. J. Spec. Top., 225, 609-625, 2016 · doi:10.1140/epjst/e2015-50265-9
[36] Schmietendorf, K., Peinke, J., and Kamps, O., arXiv:1611.08235 (2016).
[37] Pierre, B. J., Villegas Pico, H. N., Elliott, R. T., Flicker, J., Lin, Y., Johnson, B. B., Eto, J. H., Lasseter, R. H., and Ellis, A., “Bulk power system dynamics with varying levels of synchronous generators and grid-forming power inverters,” in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (IEEE, 2019), pp. 0880-0886.
[38] Wu, L. and Chen, H., “Synchronization conditions for a third-order Kuramoto network,” in 2020 59th IEEE Conference on Decision and Control (CDC) (IEEE, 2020), pp. 5834-5839.
[39] Suchithra, K. S.; Gopalakrishnan, E. A.; Surovyatkina, E.; Kurths, J., Rate-induced transitions and advanced takeoff in power systems, Chaos, 30, 061103, 2020 · Zbl 1440.37077 · doi:10.1063/5.0002456
[40] Huang, W.; Hill, D. J., Network-based analysis of long-term voltage stability considering loads with recovery dynamics, Int. J. Electr. Power Energy Syst., 119, 105891, 2020 · doi:10.1016/j.ijepes.2020.105891
[41] Yi, W. and Hill, D. J., “Topological stability analysis of high renewable penetrated systems using graph metrics,” in 2021 IEEE Madrid PowerTech (IEEE, 2021), pp. 1-6.
[42] Sharafutdinov, K.; Rydin Gorjão, L.; Matthiae, M.; Faulwasser, T.; Witthaut, D., Rotor-angle versus voltage instability in the third-order model for synchronous generators, Chaos, 28, 033117, 2018 · Zbl 1390.34152 · doi:10.1063/1.5002889
[43] Weckesser, T., Jóhannsson, H., and Østergaard, J., “Impact of model detail of synchronous machines on real-time transient stability assessment,” in 2013 IREP Symposium Bulk Power System Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid (IEEE, 2013), pp. 1-9.
[44] Kron, G., Tensor Analysis of Networks, 1939, J. Wiley & Sons: J. Wiley & Sons, New York · Zbl 0022.16801
[45] Dörfler, F.; Bullo, F., Kron reduction of graphs with applications to electrical networks, IEEE Trans. Circuits Syst. I Regul. Pap., 60, 150-163, 2013 · Zbl 1468.94590 · doi:10.1109/TCSI.2012.2215780
[46] Ma, J.; Sun, Y.; Yuan, X.; Kurths, J.; Zhan, M., Dynamics and collapse in a power system model with voltage variation: The damping effect, PLoS ONE, 11, e0165943, 2016 · doi:10.1371/journal.pone.0165943
[47] Korsak, A. J., On the question of uniqueness of stable load-flow solutions, IEEE Trans. Power Apparatus Syst., PAS-91, 1093-1100, 1972 · doi:10.1109/TPAS.1972.293463
[48] Delabays, R.; Coletta, T.; Jacquod, Ph., Multistability of phase-locking and topological winding numbers in locally coupled Kuramoto models on single-loop networks, J. Math. Phys., 57, 032701, 2016 · Zbl 1343.34087 · doi:10.1063/1.4943296
[49] Manik, D.; Timme, M.; Witthaut, D., Cycle flows and multistability in oscillatory networks, Chaos, 27, 083123, 2017 · Zbl 1390.34141 · doi:10.1063/1.4994177
[50] Jafarpour, S., Huang, E. Y., Smith, K. D., and Bullo, F., arXiv:1901.11189 (2019).
[51] Mirollo, R. E.; Strogatz, S. H., The spectrum of the locked state for the Kuramoto model of coupled oscillators, Physica D, 205, 249-266, 2005 · Zbl 1085.34033 · doi:10.1016/j.physd.2005.01.017
[52] Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2015, CRC Press: CRC Press, Boca Raton, FL · Zbl 1343.37001
[53] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, 2004, Springer-Verlag: Springer-Verlag, New York · Zbl 1082.37002
[54] Zhang, F., The Schur Complement and its Applications, 2006, Springer Science & Business Media
[55] Manik, D.; Witthaut, D.; Schäfer, B.; Matthiae, M.; Sorge, A.; Rohden, M.; Katifori, E.; Timme, M., Supply networks: Instabilities without overload, Eur. Phys. J. Spec. Top., 223, 2527, 2014 · doi:10.1140/epjst/e2014-02274-y
[56] Zelazo, D. and Bürger, M., “On the definiteness of the weighted Laplacian and its connection to effective resistance,” in 53rd IEEE Conference on Decision and Control (IEEE, 2014), pp. 2895-2900.
[57] Song, Y., Hill, D. J., and Liu, T., “Small-disturbance angle stability analysis of microgrids: A graph theory viewpoint,” in IEEE International Conference on Control Applications (CCA) (IEEE, 2015), pp. 201-206.
[58] Chen, W.; Wang, D.; Liu, J.; Basar, T.; Johansson, K. H.; Qiu, L., On semidefiniteness of signed Laplacians with application to microgrids, IFAC-PapersOnLine, 49-22, 97-102, 2016 · doi:10.1016/j.ifacol.2016.10.379
[59] Chen, W., Liu, J., Chen, Y., Khong, S. Z., Wang, D., Basar, T., Qiu, L., and Johansson, K. H., “Characterizing the positive semidefiniteness of signed Laplacians via effective resistances,” in 55th IEEE Conference on Decision and Control (CDC) (IEEE, 2016), pp. 985-990.
[60] Geršgorin, S., Über die abgrenzung der eigenwerte einer Matrix, Izv. Akad. Nauk S.S.S.R. Otd. Mat. Estestvennykh Nauk, 6, 749-754, 1931 · Zbl 0003.00102
[61] Newman, M., Networks: An Introduction, 2018, Oxford University Press · Zbl 1391.94006
[62] Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J., 23, 298, 1973 · Zbl 0265.05119 · doi:10.21136/CMJ.1973.101168
[63] Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech. Math. J., 25, 619-633, 1975 · Zbl 0437.15004 · doi:10.21136/CMJ.1975.101357
[64] Chung, F. R. K.; Graham, F. C., Spectral Graph Theory, 1997, American Mathematical Society · Zbl 0867.05046
[65] Filatrella, G.; Nielsen, A. H.; Pedersen, N. F., Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B, 61, 485-491, 2008 · doi:10.1140/epjb/e2008-00098-8
[66] Nishikawa, T.; Motter, A. E., Comparative analysis of existing models for power-grid synchronization, New J. Phys., 17, 015012, 2015 · Zbl 1452.91229 · doi:10.1088/1367-2630/17/1/015012
[67] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Jarrod Millman, K.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C.; Polat, İ.; Feng, Y.; Moore, E. W.; Vand erPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P., SciPy 1.0: Fundamental algorithms for scientific computing in python, Nat. Methods, 17, 261-272, 2020 · doi:10.1038/s41592-019-0686-2
[68] Ansmann, G., Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE, Chaos, 28, 043116, 2018 · Zbl 1390.34005 · doi:10.1063/1.5019320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.