×

Bifurcations and patterns in the Kuramoto model with inertia. (English) Zbl 1523.34038

The authors study the Kuramoto model with inertia given by \[ \ddot{\theta}_i+\dot{\theta}_i=\omega_i+\frac{2K}{n}\sum_{j=1}^n a_{ij}^n\sin{(\theta_j-\theta_i)}, \] where \(K\) is the coupling strength and \(a_{ij}^n\) is the adjacency matrix of one from a convergent sequence of graphs. The intrinsic frequencies \(\omega_i\) are independent identically distributed random variables drawn from the probability distribution \(g(\omega)\). The authors analyze the system in the continuum limit of \(n\to\infty\). They first consider the stability of the phase incoherent state (referred to as “mixing”) which is stable for small \(|K|\), determining values of \(K\) at which it becomes unstable, and what bifurcations occur at these points. Penrose diagrams are used in the analysis. For all-to-all coupling, a unimodal, symmetric bimodal, and asymmetric bimodal distribution \(g(\omega)\) are considered, and pitchfork and Andronov-Hopf bifurcations are found, resulting in various stable partially coherent states. They then consider nonlocal nearest-neighbour coupling, effectively putting the oscillators on a periodic domain. For different distributions \(g(\omega)\), different stable spatiotemporal patterns may now arise. The inclusion of inertia creates several new bifurcation scenarios that do not occur in the Kuramoto model without inertia. The results are illustrated with a number of calculations.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
35B32 Bifurcations in context of PDEs
34D06 Synchronization of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
35Q83 Vlasov equations

References:

[1] Acebrón, JA; Bonilla, LL; Spigler, R., Synchronization in populations of globally coupled oscillators with inertial effects, Phys. Rev. E, 62, 3437-3454 (2000) · doi:10.1103/PhysRevE.62.3437
[2] Chiba, Hayato, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dyn. Syst., 35, 3, 762-834 (2015) · Zbl 1322.37036 · doi:10.1017/etds.2013.68
[3] Chiba, Hayato, A Hopf bifurcation in the Kuramoto-Daido model, J. Differ. Equ., 280, 546-570 (2021) · Zbl 1465.34046 · doi:10.1016/j.jde.2021.01.024
[4] Chiba, H.; Medvedev, GS, The mean field analysis of the Kuramoto model on graphs I. The mean field equation and transition point formulas, Discrete Contin. Dyn. Syst., 39, 1, 131-155 (2019) · Zbl 1406.34064 · doi:10.3934/dcds.2019006
[5] Chiba, Hayato; Medvedev, Georgi S., Stability and bifurcation of mixing in the Kuramoto model with inertia, SIAM J. Math. Anal., 54, 2, 1797-1819 (2022) · Zbl 1497.34058 · doi:10.1137/21M1427000
[6] Chiba, H.; Medvedev, GS; Mizuhara, MS, Bifurcations in the Kuramoto model on graphs, Chaos, 28, 7 (2018) · Zbl 1407.34053 · doi:10.1063/1.5039609
[7] Chiba, Hayato; Medvedev, Georgi S.; Mizuhara, Matthew S., Instability of mixing in the Kuramoto model: from bifurcations to patterns, Pure Appl. Func. Anal., 7, 4, 1159-1172 (2022) · Zbl 1500.35025
[8] Dietert, H., Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl. (9), 105, 4, 451-489 (2016) · Zbl 1339.35318 · doi:10.1016/j.matpur.2015.11.001
[9] Dobrušin, RL, Vlasov equations, Funktsional. Anal. i Prilozhen., 13, 2, 48-58 (1979) · Zbl 0405.35069
[10] Dörfler, Florian; Bullo, Francesco, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control. Optim., 50, 3, 1616-1642 (2012) · Zbl 1264.34105 · doi:10.1137/110851584
[11] Golse, F.: On the dynamics of large particle systems in the mean field limit, Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity. Lect. Notes Appl. Math. Mech., vol. 3, pp. 1-144. Springer, Cham (2016)
[12] Gupta, Shamik; Campa, Alessandro; Ruffo, Stefano, Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise, Phys. Rev. E, 89 (2014) · Zbl 1456.34060 · doi:10.1103/PhysRevE.89.022123
[13] Peron, T.; Rodrigues, FA; Kurths, J.; Ji, P., Low-dimensional behavior of kuramoto model with inertia in complex networks, Sci. Rep., 4, 4783 (2014) · doi:10.1038/srep04783
[14] Kaliuzhnyi-Verbovetskyi, Dmitry; Medvedev, GS, The mean field equation for the Kuramoto model on graph sequences with non-Lipschitz limit, SIAM J. Math. Anal., 50, 3, 2441-2465 (2018) · Zbl 1406.35096 · doi:10.1137/17M1134007
[15] Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), pp. 420-422, 39. Lecture Notes in Phys. Springer, Berlin (1975) · Zbl 0335.34021
[16] Medvedev, G.S.:, The continuum limit of the Kuramoto model on sparse random graphs. Commun. Math. Sci. 17(4), 883-898 (2019) · Zbl 1432.34045
[17] Medvedev, GS; Mizuhara, MS, Stability of clusters in the second-order Kuramoto model on random graphs, J. Stat. Phys., 182, 2, 30 (2021) · Zbl 1462.82041 · doi:10.1007/s10955-021-02708-2
[18] Medvedev, GS; Mizuhara, MS, Chimeras unfolded, J. Stat. Phys., 186, 3, 46 (2022) · Zbl 1495.34060 · doi:10.1007/s10955-022-02881-y
[19] Penrose, Oliver, Electrostatic instabilities of a uniform non-maxwellian plasma, Phys. Fluids, 3, 2, 258-265 (1960) · Zbl 0090.22801 · doi:10.1063/1.1706024
[20] Rodrigues, FA; Peron, TK; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98 (2016) · Zbl 1357.34089 · doi:10.1016/j.physrep.2015.10.008
[21] Salam, F.; Marsden, J.; Varaiya, P., Arnold diffusion in the swing equations of a power system, IEEE Trans. Circuits Syst., 31, 8, 673-688 (1984) · Zbl 0561.58013 · doi:10.1109/TCS.1984.1085570
[22] Simon, Barry, Basic complex analysis, A Comprehensive Course in Analysis, Part 2A (2015), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1332.00004
[23] Strogatz, Steven H.; Mirollo, Renato E., Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63, 3-4, 613-635 (1991) · doi:10.1007/BF01029202
[24] Tanaka, Hisa-Aki; Lichtenberg, Allan J.; Oishi, Shin’ichi, First order phase transition resulting from finite inertia in coupled oscillator systems, Phys. Rev. Lett., 78, 2104-2107 (1997) · doi:10.1103/PhysRevLett.78.2104
[25] Tumash, L.; Olmi, S.; Schöll, E., Stability and control of power grids with diluted network topology, Chaos Interdiscipl. J. Nonlinear Sci., 29, 12 (2019) · Zbl 1429.34059 · doi:10.1063/1.5111686
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.