×

Hysteretic behavior of spatially coupled phase-oscillators. (English) Zbl 1465.34047

Summary: Motivated by phenomena related to biological systems such as the synchronously flashing swarms of fireflies, we investigate a network of phase oscillators evolving under the generalized Kuramoto model with inertia. A distance-dependent, spatial coupling between the oscillators is considered. Zeroth and first order kernel functions with finite kernel radii were chosen to investigate the effect of local interactions. The hysteretic dynamics of the synchronization depending on the coupling parameter was analyzed for different kernel radii. Numerical investigations demonstrate that (1) locally locked clusters develop for small coupling strength values, (2) the hysteretic behavior vanishes for small kernel radii, (3) the ratio of the kernel radius and the maximal distance between the oscillators characterizes the behavior of the network.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
92B25 Biological rhythms and synchronization

References:

[1] A. Aubret, M. Youssef, S. Sacanna and J. Palacci, Targeted assembly and synchronization of self-spinning microgears. Nat. Phys. 14 (2018) 1114-1118.
[2] M. Breakspear, S. Heitmann and A. Daffertshofer, Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Human Neurosci. 4 (2010) 190. · doi:10.3389/fnhum.2010.00190
[3] D. Cumin and C.P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226 (2007) 181-196. · Zbl 1120.34024
[4] A. Cenedese and C. Favaretto, On the synchronization of spatially coupled oscillators (2015).
[5] B. Ermentrout, An adaptive model for synchrony in the firefly pteroptyx malaccae. J. Math. Biol. 29 (1991) 571-585. · Zbl 0719.92009
[6] B. Ermentrout and J. Rinzel, Beyond a pacemaker’s entrainment limit: phase walk-through. Am. J. Physiol. 246 (1984) R102-R106.
[7] G. Filatrella, A.H. Nielsen and N.F. Pedersen, Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61 (2008) 485-491. · doi:https://epjb.epj.org/articles/epjb/abs/2008/04/b07917/b07917.html
[8] F.E. Hanson, Comparative studies of firefly pacemakers. Vol. 37 of Federation proceedings (1978) 2158-2164.
[9] Z. Jiang and M. McCall, Numerical simulation of a large number of coupled lasers. J. Opt. Soc. Am. B 10 (1996) 155.
[10] T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski and Y. Maistrenko, Imperfect chimera states for coupled pendula. Sci. Rep. 4 (2014) 6379. · doi:10.1038/srep06379
[11] Y. Kuramoto, International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30 (1975) 420. cited By 14. · doi:10.1007/BFb0013365
[12] X. Li and P. Rao, Synchronizing a weighted and weakly-connected Kuramoto-oscillator digraph with a pacemaker. IEEE Trans. Circ. Syst. I: Regular Papers 62 (2015) 899-905. · Zbl 1468.94711 · doi:10.1109/TCSI.2014.2382193
[13] S. Leonardy, G. Freymark, S. Hebener, E. Ellehauge and L. Søgaard-Andersen, Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J. 26 (2007) 4433-4444.
[14] Y.L. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko and P.A. Tass, Multistability in the Kuramoto model with synaptic plasticity. Phys. Rev. E 75 (2007).
[15] N. Motee and Q. Sun, Sparsity measures for spatially decayingsystems (2014).
[16] R.K. Niyogi and L.Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Phys. Rev. E 80 (2009).
[17] G. Ódor and B. Hartmann, Heterogeneity effects in power grid network models. Phys. Rev. E 98 (2018) 022305.
[18] S. Olmi, A. Navas, S. Boccaletti and A. Torcini, Hysteretic transitions in the Kuramoto model with inertia. Phys. Rev. E 90 (2014) 042905.
[19] G.H Paissan and D.H Zanette, Synchronization and clustering of phase oscillators with heterogeneous coupling. Europhys. Lett. 77 (2007) 20001. · Zbl 1163.34032
[20] T.K.D.M. Peron, P. Ji, F.A. Rodrigues and J. Kurths, Effects of assortative mixing in the second-order Kuramoto model. Phys. Rev. E 91 (2015) 052805.
[21] M. Rohden, A. Sorge, M. Timme and D. Witthaut, Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109 (2012) 064101. · Zbl 1374.05220 · doi:10.1103/PhysRevLett.109.064101
[22] F. Salam, J. Marsden and P. Varaiya, Arnold diffusion in the swing equations of a power system. IEEE Trans. Circ. Syst. 31 (1984) 673-688. · Zbl 0561.58013 · doi:10.1109/TCS.1984.1085570
[23] J. Sieber and T. Kalmár-Nagy, Stability of a chain of phase oscillators. Phys. Rev. E 84 (2011) 016227.
[24] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data. Proceedings ofthe 1968 23rd ACM national conference. ACM (1968) 517-524. · doi:10.1145/800186.810616
[25] H.A. Tanaka, A.J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses. Physica D 100 (1997) 279-300. · Zbl 0898.70016
[26] B.R. Trees, V. Saranathan and D. Stroud, Synchronization in disordered Josephson junction arrays: small-world connections and the Kuramoto model. Phys. Rev. E 71 (2005).
[27] L. Tumash, S. Olmi and E. Schöll, Effect of disorder and noise in shaping the dynamics of power grids. Europhys. Lett. 123 (2018) 20001. · Zbl 1429.34059
[28] B. Tóth, Nauticle: a general-purpose particle-based simulation tool. Preprint abs/1710.08259 (2018).
[29] T.J. Walker, Acoustic synchrony: two mechanisms in the snowy tree cricket. Science 166 (1969) 891-894.
[30] H. Wu, L. Kang, Z. Liu and M. Dhamala, Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Sci. Rep. 8 (2018) 15521. · doi:10.1038/s41598-018-33845-6
[31] C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng and S. Guan, Synchronization of phase oscillators with frequency-weighted coupling. Sci. Rep. 6 (2016) 21926. · doi:10.1038/srep21926
[32] D. Yuan, F. Lin, L. Wang, D. Liu, J. Yang and Y. Xiao, Multistable states in a system of coupled phase oscillators with inertia. Sci. Rep. 7 (2017) 42178. · doi:10.1038/srep42178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.