×

A characteristic function-based algorithm for geodesic active contours. (English) Zbl 1524.68423

Summary: Active contour models have been widely used in image segmentation, and the level set method (LSM) is the most popular approach for solving the models, via implicitly representing the contour by a level set function. However, the LSM suffers from high computational burden and numerical instability, requiring additional regularization terms or reinitialization techniques. In this paper, we use characteristic functions to implicitly represent the contours, propose a new representation to the geodesic active contours, and derive an efficient algorithm termed the iterative convolution-thresholding method (ICTM). Compared to the LSM, the ICTM is simpler and much more efficient. In addition, the ICTM enjoys most desired features of the level set-based methods. Extensive experiments, on two-dimensional (2D) synthetic, 2D ultrasound, 3D computed tomography, and 3D magnetic resonance images for nodule, organ, and lesion segmentation demonstrate that the proposed method not only obtains comparable or even better segmentation results (compared to the LSM) but also achieves significant acceleration.

MSC:

68U10 Computing methodologies for image processing
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
92C55 Biomedical imaging and signal processing

References:

[1] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, Dataset of breast ultrasound images, Data in Brief, 28 (2020), 104863.
[2] B. Appleton and H. Talbot, Globally optimal geodesic active contours, J. Math. Imaging Vision, 23 (2005), pp. 67-86. · Zbl 1478.94005
[3] I. B. Ayed, A. Mitiche, and Z. Belhadj, Multiregion level-set partitioning of synthetic aperture radar images, IEEE Trans. Pattern Anal. Machine Intelligence, 27 (2005), pp. 793-800.
[4] A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data, SIAM Rev., 58 (2016), pp. 293-328. · Zbl 1339.68287
[5] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.-P. Thiran, and S. Osher, Fast global minimization of the active contour/snake model, J. Math. Imaging Vision, 28 (2007), pp. 151-167. · Zbl 1523.94005
[6] V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Int. J. Comput. Vis., 22 (1997), pp. 61-79. · Zbl 0894.68131
[7] T. F. Chan, S. Esedoglu, and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Appl. Math., 66 (2006), pp. 1632-1648. · Zbl 1117.94002
[8] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Image Process., 10 (2001), pp. 266-277. · Zbl 1039.68779
[9] X. Chen, B. M. Williams, S. R. Vallabhaneni, G. Czanner, R. Williams, and Y. Zheng, Learning active contour models for medical image segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 11632-11640.
[10] D. Cremers, F. Tischhäuser, J. Weickert, and C. Schnörr, Diffusion snakes: Introducing statistical shape knowledge into the Mumford-Shah functional, Int. J. Comput. Vis., 50 (2002), pp. 295-313. · Zbl 1012.68785
[11] Q. Du, M. Gunzburger, L. Ju, and X. Wang, Centroidal voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration, J. Math. Imaging Vis., 24 (2006), pp. 177-194. · Zbl 1478.94033
[12] S. Esedoglu and Y.-H. R. Tsai, Threshold dynamics for the piecewise constant Mumford-Shah functional, J. Comput. Phys., 211 (2006), pp. 367-384. · Zbl 1086.65522
[13] S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, Comm. Pure Appl. Math., 68 (2015), pp. 808-864. · Zbl 1334.82072
[14] S. Esedoglu, R. Tsai, and S. Ruuth, Threshold dynamics for high order geometric motions, Interfaces Free Bound., 10 (2008), pp. 263-282. · Zbl 1157.65330
[15] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, Fast geodesic active contours, IEEE Trans. Image Process., 10 (2001), pp. 1467-1475.
[16] L. Gui, J. He, Y. Qiu, and X. Yang, Integrating compact constraint and distance regularization with level set for hepatocellular carcinoma (HCC) segmentation on computed tomography (CT) images, Sensing and Imaging, 18 (2017).
[17] L. Gui and X. Yang, Automatic renal lesion segmentation in ultrasound images based on saliency features, improved IBP, and an edge indicator under level set framework, Medical Physics, 45 (2018), pp. 223-235.
[18] X. Guo, L. H. Schwartz, and B. Zhao, Automatic liver segmentation by integrating fully convolutional networks into active contour models, Medical Physics, 46 (2019), pp. 4455-4469.
[19] W. Hu, Threshold Dynamics: Analysis and Applications, Ph.D. thesis, Hong Kong University of Science and Technology, 2020.
[20] Y. Hu, Y. Guo, Y. Wang, J. Yu, J. Li, S. Zhou, and C. Chang, Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model, Medical Physics, 46 (2019), pp. 215-228.
[21] C. Huang, X. Shan, Y. Lan, L. Liu, H. Cai, W. Che, Y. Hao, Y. Cheng, and Y. Peng, A hybrid active contour segmentation method for myocardial D-SPECT images, IEEE Access, 6 (2018), pp. 39334-39343.
[22] M. Jacobs, E. Merkurjev, and S. Esedoglu, Auction dynamics: A volume constrained MBO scheme, J. Comput. Phys., 354 (2018), pp. 288-310. · Zbl 1380.52018
[23] S. Jiang, D. Wang, and X.-P. Wang, An efficient boundary integral scheme for the MBO threshold dynamics method via the NUFFT, J. Sci. Comput., 74 (2018), pp. 474-490. · Zbl 1419.65080
[24] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, Int. J. Comput. Vis., 1 (1988), pp. 321-331. · Zbl 0646.68105
[25] A. Khadidos, V. Sanchez, and C.-T. Li, Weighted level set evolution based on local edge features for medical image segmentation, IEEE Trans. Image Process., 26 (2017), pp. 1979-1991. · Zbl 1409.94294
[26] B. Kim and J. C. Ye, Mumford-Shah loss functional for image segmentation with deep learning, IEEE Trans. Image Process., 29 (2019), pp. 1856-1866.
[27] Y. Kim, S. Kim, T. Kim, and C. Kim, Cnn-based semantic segmentation using level set loss, in Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), 2019, pp. 1752-1760.
[28] S. Lankton and A. Tannenbaum, Localizing region-based active contours, IEEE Trans. Image Process., 17 (2008), pp. 2029-2039. · Zbl 1371.94213
[29] C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI, IEEE Trans. Image Process., 20 (2011), pp. 2007-2016. · Zbl 1372.68275
[30] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, Minimization of region-scalable fitting energy for image segmentation, IEEE Trans. Image Process., 17 (2008), pp. 1940-1949. · Zbl 1371.94225
[31] C. Li, C. Xu, C. Gui, and M. D. Fox, Distance regularized level set evolution and its application to image segmentation, IEEE Trans. Image Process., 19 (2010), pp. 3243-3254. · Zbl 1371.94226
[32] J. Lie, M. Lysaker, and X.-C. Tai, A binary level set model and some applications to Mumford-Shah image segmentation, IEEE Trans. Image Process., 15 (2006), pp. 1171-1181. · Zbl 1286.94018
[33] J. Liu, X.-c. Tai, H. Huang, and Z. Huan, A fast segmentation method based on constraint optimization and its applications: Intensity inhomogeneity and texture segmentation, Pattern Recognition, 44 (2011), pp. 2093-2108.
[34] J. Liu, X. Wang, and X.-c. Tai, Deep Convolutional Neural Networks with Spatial Regularization, Volume and Star-Shape Priori for Image Segmentation, preprint, https://arxiv.org/abs/2002.03989, 2020.
[35] J. Liu and H. Zhang, Image segmentation using a local GMM in a variational framework, J. Math. Imaging Vis., 46 (2013), pp. 161-176. · Zbl 1310.94018
[36] T. Liu, H. Xu, W. Jin, Z. Liu, Y. Zhao, and W. Tian, Medical image segmentation based on a hybrid region-based active contour model, Comput. Math. Methods Medicine, 2014 (2014). · Zbl 1307.92208
[37] J. Ma, Cutting-edge 3D Medical Image Segmentation Methods in 2020: Are Happy Families all Alike?, preprint, https://arxiv.org/abs/2101.00232, 2021.
[38] J. Ma, J. Chen, M. Ng, R. Huang, Y. Li, C. Li, X. Yang, and A. L. Martel, Loss odyssey in medical image segmentation, Medical Image Analysis, 71 (2021), 102035.
[39] J. Ma, J. He, and X. Yang, Learning geodesic active contours for embedding object global information in segmentation cnns, IEEE Trans. Medical Imaging, 40 (2021), pp. 93-104.
[40] J. Ma, Y. Wang, X. An, C. Ge, Z. Yu, J. Chen, Q. Zhu, G. Dong, J. He, Z. He, T. Cao, Y. Zhu, Z. Nie, and X. Yang, Towards data‐-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation, Medical Physics, 48 (2021), pp. 1197-1210.
[41] J. Ma and X. Yang, Automatic dental root CBCT image segmentation based on CNN and level set method, in Medical Imaging 2019: Image Processing, Vol. 10949, SPIE, 2019.
[42] D. E. Maroulis, M. A. Savelonas, D. K. Iakovidis, S. A. Karkanis, and N. Dimitropoulos, Variable background active contour model for computer-aided delineationof nodules in thyroid ultrasound images, IEEE Trans. Inf. Technology Biomedicine, 11 (2007), pp. 537-543.
[43] E. Merkurjev, T. Kostic, and A. L. Bertozzi, An mbo scheme on graphs for classification and image processing, SIAM J. Imaging Sci., 6 (2013), pp. 1903-1930. · Zbl 1279.68335
[44] B. Merriman, J. Bence, and S. Osher, Diffusion generated motion by mean curvature, in Proceedings of the Computational Crystal Grower’s Workshop, 1992, pp. 73-83.
[45] B. Merriman, J. K. Bence, and S. J. Osher, Motion of multiple junctions: A level set approach, J. Comput. Phys., 112 (1994), pp. 334-363. · Zbl 0805.65090
[46] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, Image segmentation using deep learning: A survey, IEEE Trans. Pattern Anal. Machine Intelligence (2021), https://doi.org/10.1109/TPAMI.2021.3059968.
[47] M. Miranda, D. Pallara, F. Paronetto, and M. Preunkert, Short-time heat flow and functions of bounded variation in \({R}^n\), Ann. Fac. Sci. Toulouse Math., 16 (2007), pp. 125-145. · Zbl 1142.35445
[48] A. Mitiche and I. B. Ayed, Variational and Level Set Methods in Image Segmentation, Springer Top. Signal Process. 5, Springer, New York, 2010.
[49] T. A. Ngo, Z. Lu, and G. Carneiro, Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance, Medical Image Analysis, 35 (2017), pp. 159-171.
[50] S. Osher and R. P. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys., 169 (2001), pp. 463-502. · Zbl 0988.65093
[51] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12-49. · Zbl 0659.65132
[52] B. Osting and D. Wang, A diffusion generated method for orthogonal matrix-valued fields, Math. Comp., 89 (2020), pp. 515-550. · Zbl 1435.65144
[53] B. Osting and D. Wang, Diffusion generated methods for denoising target-valued images, Inverse Problems Imaging, 14 (2020), pp. 205-232. · Zbl 1437.65126
[54] D. L. Pham, Spatial models for fuzzy clustering, Computer Vision Image Understanding, 84 (2001), pp. 285-297. · Zbl 1033.68612
[55] D. L. Pham, C. Xu, and J. L. Prince, Current methods in medical image segmentation, Ann. Rev. Biomedical Engineering, 2 (2000), pp. 315-337.
[56] N. Ray, S. T. Acton, T. Altes, E. E. De Lange, and J. R. Brookeman, Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation, IEEE Trans. Medical Imaging, 22 (2003), pp. 189-199.
[57] S. J. Ruuth and B. T. Wetton, A simple scheme for volume-preserving motion by mean curvature, J. Sci. Comput., 19 (2003), pp. 373-384. · Zbl 1035.65097
[58] K. Suzuki, R. Kohlbrenner, M. L. Epstein, A. M. Obajuluwa, J. Xu, and M. Hori, Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms, Medical Physics, 37 (2010), pp. 2159-2166.
[59] R. Szeliski, Computer Vision: Algorithms and Applications, Springer, New York, 2010. · Zbl 1219.68009
[60] X.-C. Tai, O. Christiansen, P. Lin, and I. Skj\aelaaen, A Remark on the MBO Scheme and Some Piecewise Constant Level Set Methods, CAM report, Applied Mathematics, UCLA, 2005, pp. 05-24.
[61] P. D. Tao and L. T. H. An, Convex analysis approach to DC programming: Theory, algorithms and applications, Acta Math. Vietnam., 22 (1997), pp. 289-355. · Zbl 0895.90152
[62] P. D. Tao and L. T. H. An, A DC optimization algorithm for solving the trust-region subproblem, SIAM J. Optim., 8 (1998), pp. 476-505. · Zbl 0913.65054
[63] G. Unal, G. G. Slabaugh, T. Fang, S. Lankton, V. Canda, S. Thesen, and S. Qing, System and Method for Lesion Segmentation in Whole Body Magnetic Resonance Images, US Patent 8,155,405, 2012.
[64] Y. Van Gennip, N. Guillen, B. Osting, and A. L. Bertozzi, Mean curvature, threshold dynamics, and phase field theory on finite graphs, Milan J. Math., 82 (2014), pp. 3-65. · Zbl 1325.35245
[65] D. Wang, An efficient iterative method for reconstructing surface from point clouds, J. Sci. Comput., 87 (2021), pp. 1-21. · Zbl 1471.49002
[66] D. Wang, S. Jiang, and X.-P. Wang, An efficient boundary integral scheme for the threshold dynamics method ii: Applications to wetting dynamics, J. Sci. Comput., 81 (2019), pp. 1860-1881. · Zbl 1434.65168
[67] D. Wang, H. Li, X. Wei, and X.-P. Wang, An efficient iterative thresholding method for image segmentation, J. Comput. Phys., 350 (2017), pp. 657-667. · Zbl 1380.65048
[68] D. Wang and B. Osting, A diffusion generated method for computing Dirichlet partitions, J. Comput. Appl. Math., 351 (2019), pp. 302-316. · Zbl 1407.51027
[69] D. Wang, B. Osting, and X.-P. Wang, Interface dynamics for an Allen-Cahn-type equation governing a matrix-valued field, SIAM J. Multiscale Modeling Simul., 17 (2019), pp. 1252-1273. · Zbl 1439.35408
[70] D. Wang and X.-P. Wang, The Iterative Convolution-Thresholding Method (ICTM) for Image Segmentation, preprint, https://arxiv.org/abs/1904.10917, 2019.
[71] D. Wang, X.-P. Wang, and X. Xu, An improved threshold dynamics method for wetting dynamics, J. Comput. Phys., 392 (2019), pp. 291-310. · Zbl 1452.76191
[72] J. Wang, L. Ju, and X. Wang, An edge-weighted centroidal voronoi tessellation model for image segmentation, IEEE Trans. Image Process., 18 (2009), pp. 1844-1858. · Zbl 1371.94399
[73] J. Wang, L. Ju, and X. Wang, Image segmentation using local variation and edge-weighted centroidal voronoi tessellations, IEEE Trans. Image Process., 20 (2011), pp. 3242-3256. · Zbl 1372.94260
[74] H. Xu, T. Liu, and G. Wang, Hybrid geodesic region-based active contours for image segmentation, Computers Electrical Engineering, 40 (2014), pp. 858-869.
[75] X. Xu, D. Wang, and X.-P. Wang, An efficient threshold dynamics method for wetting on rough surfaces, J. Comput. Phys., 330 (2017), pp. 510-528. · Zbl 1378.76087
[76] Y.-z. Zeng, S.-h. Liao, P. Tang, Y.-q. Zhao, M. Liao, Y. Chen, and Y.-x. Liang, Automatic liver vessel segmentation using 3D region growing and hybrid active contour model, Computers Biology Medicine, 97 (2018), pp. 63-73.
[77] W. Zhang, X. Wang, J. Chen, and W. You, A new hybrid level set approach, IEEE Trans. Image Process., 29 (2020), pp. 7032-7044. · Zbl 07586381
[78] W. Zhang, X. Wang, W. You, J. Chen, P. Dai, and P. Zhang, RESLS: Region and edge synergetic level set framework for image segmentation, IEEE Trans. Image Process., 29 (2019), pp. 57-71. · Zbl 07585861
[79] Y. Zhang, B. J. Matuszewski, L.-K. Shark, and C. J. Moore, Medical image segmentation using new hybrid level-set method, in Proceedings of the 5th International Conference on Biomedical Visualization: Information Visualization in Medical and Biomedical Informatics, 2008, pp. 71-76.
[80] Y. Zhao, L. Rada, K. Chen, S. P. Harding, and Y. Zheng, Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images, IEEE Trans. Medical Imaging, 34 (2015), pp. 1797-1807.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.