×

Moment maps and isoparametric hypersurfaces in spheres – Hermitian cases. (English) Zbl 1330.53111

Given a Riemannian manifold \(M\), a hypersurface \(N\) is called isoparametric if it is the regular level set of a so-called isoparametric function. When \(M\) is the round sphere \(S^n\), this is equivalent to \(N\) having constant principal curvatures, hence homogeneous hypersurfaces in \(S^n\) are isoparametric. Isoparametric hypersurfaces in \(S^n\) with \(g\) distinct principal curvatures are also characterized as regular level sets of the restriction to \(S^n\) of Cartan-Münzner polynomials of degree \(g\).
The authors expect the following result for the case \(g=4\): Every Cartan-Münzner polynomials is the squared norm of a moment map. The main statement of the paper works toward this result in the special case of isoparametric hypersurfaces of \(S^n\) which are suitable orbits of the isotropy representation of a compact irreducible symmetric space \(G/K\) of rank 2.
The isotropy representation of \(G/K\) is the adjoint action of \(K\) on \(\mathfrak{p}\), where \(\mathfrak{k}\oplus \mathfrak{p}\) is the Cartan decomposition of the Lie algebra of \(G\). \(\mathfrak{p}\) is endowed with a canonical (up to sign) symplectic form, and the isotropy action is Hamiltonian with canonical moment map. The main statement of the paper is that there exists an invariant norm on \(\mathfrak{k}^*\) such that the squared-norm of the moment map is a Cartan-Münzner polynomial of degree 4.

MSC:

53D20 Momentum maps; symplectic reduction
53C20 Global Riemannian geometry, including pinching
53C40 Global submanifolds

References:

[1] T. E. Cecil, Lie Sphere Geometry. With Applications to Submanifolds, 2nd ed., Universitext, Springer, New York, 2008. · Zbl 1134.53001
[2] T. E. Cecil, Q.-S. Chi, G. R. Jensen, Isoparametric hypersurfaces with four principal curvatures, Ann. of Math. (2) 165 (2007), 1-76. · Zbl 1143.53058
[3] Q.-S. Chi, Isoparametric hypersurfaces with four principal curvatures revisited, Nagoya Math. J. 193 (2009), 129-154. · Zbl 1165.53032
[4] Q.-S. Chi, Isoparametric hypersurfaces with four principal curvatures, II, Nagoya Math. J. 204 (2011), 1-18. · Zbl 1243.53094
[5] Q.-S. Chi, Isoparametric hypersurfaces with four principal curvatures, III, J. Diff. Geom. 94 (2013), 469-504. · Zbl 1280.53053
[6] J. Dorfmeister, E. Neher, Isoparametric hypersurfaces, case g = 6, m = 1, Comm. Algebra 13 (1985), 2299-2368. · Zbl 0578.53041
[7] D. Ferus, H. Karcher, H. F. Münzner, Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479-502. · Zbl 0443.53037
[8] S. Fujii, Homogeneous isoparametric hypersurfaces in spheres with four distinct principal curvatures and moment maps, Tôhoku Math. J. 62 (2010), 191-213. · Zbl 1257.53085
[9] L. C. Grove, C. T. Benson, Finite Reflection Groups, 2nd ed., Graduate Texts in Mathematics, Vol. 99, Springer-Verlag, New York, 1996. · Zbl 0579.20045
[10] S. Helgason, Differential geometry, Lie groups, and Symmetric Spaces, Corrected reprint of the 1978 original, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, RI, 2001. · Zbl 0993.53002
[11] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, 2nd printing, revised, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1978. · Zbl 0447.17001
[12] W.-Y. Hsiang, H. B. Lawson, Jr., Minimal submanifolds of low cohomogeneity, J. Diff. Geom. 5 (1971), 1-38. · Zbl 0219.53045
[13] F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes 31, Princeton University Press, Princeton, NJ, 1984. · Zbl 0553.14020
[14] S. Immervoll, On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres, Ann. of Math. (2) 168 (2008), 1011-1024. · Zbl 1176.53057
[15] O. Loos, Symmetric Spaces II: Compact Spaces and Classification, Benjamin, New York, 1969. · Zbl 0175.48601
[16] R. Miyaoka, Moment maps of the spin action and the Cartan-Münzner polynomials of degree four, Math. Ann. 355 (2013), 1067-1084. · Zbl 1267.53057
[17] R. Miyaoka, Isoparametric hypersurfaces with (g, m) = (6, 2), Ann. of Math. (2) 177 (2013), 53-110. · Zbl 1263.53049
[18] H. F. Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), 57-71. · Zbl 0417.53030
[19] H. F. Münzner, Isoparametrische Hyperflächen in Sphären, II, Über die Zerlegung der Sphäre in Ballbündel, Math. Ann. 256 (1981), 215-232. · Zbl 0438.53050
[20] T. Nagano, M. S. Tanaka, The involutions of compact symmetric spaces, V, Tokyo J. Math. 23 (2000), 403-416. · Zbl 1037.53039
[21] Y. Nagatomo, M. Takahashi, Vector bundles, isoparametric functions and Radon transformations on a symmetric space, preprint, 2010. · Zbl 1432.53078
[22] Y. Ohnita, Moment maps and symmetric Lagrangian submanifolds, in: Proceedings of the Conference “Submanifolds in Yuzawa 2004”, 2005, pp. 33-38, available at http://www.sci.osaka-cu.ac.jp/∼ohnita/paper/Yuzawa04.pdf.
[23] H. Ozeki, M. Takeuchi, On some types of isoparametric hypersurfaces in spheres, I, Tôhoku Math. J. (2) 27 (1975), 515-559. · Zbl 0359.53011
[24] H. Ozeki, M. Takeuchi, On some types of isoparametric hypersurfaces in spheres, II, Tôhoku Math. J. (2) 28 (1976), 7-55. · Zbl 0359.53012
[25] H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25 (2001), 279-298. · Zbl 1022.53045
[26] R. S. Palais, C. L. Terng, A general theory of canonical forms, Trans. Amer. Math. Soc. 300 (1987), 771-788. · Zbl 0652.57023
[27] H. Tamaru, The local orbit types of symmetric spaces under the actions of the isotropy subgroups, Diff. Geom. Appl. 11 (1999), 29-38. · Zbl 0941.53035
[28] H. Tamaru, Riemannian G.O. spaces fibered over irreducible symmetric spaces, Osaka J. Math. 36 (1999), 835-851. · Zbl 0963.53026
[29] G. Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations, in: Handbook of Differential Geometry, Vol. I, North-Holland, Amsterdam, 2000, pp. 963-995. · Zbl 0979.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.