×

Measure optimal controls for models inspired by biology. (English) Zbl 1517.35231

Summary: The paper is concerned with optimal control problems for a parabolic system, coupled with zero Neumann boundary conditions and with nonlinear source terms. Inspired by applications in biology and medicine, the system aims to describe two species in competition in the same spatial region and is supplemented with measure valued distributed controls, acting as source terms. Introducing general cost functionals, one can study optimal control problems. We prove the existence of solutions for the parabolic equations with measure valued controls, together with suitable stability estimates. Moreover, the existence of optimal solutions in a distributional sense is also established.

MSC:

35Q93 PDEs in connection with control and optimization
35K51 Initial-boundary value problems for second-order parabolic systems
49J20 Existence theories for optimal control problems involving partial differential equations
49N25 Impulsive optimal control problems
49N90 Applications of optimal control and differential games
35B35 Stability in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
92D25 Population dynamics (general)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] H. Amann, Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J. Math. Anal. Appl., 65 (1978), pp. 432-467, https://doi.org/10.1016/0022-247X(78)90192-0. · Zbl 0387.35038
[2] J. M. Ball, A version of the fundamental theorem for Young measures, in PDEs and Continuum Models of Phase Transitions, Lecture Notes in Phys. 344, Springer, Berlin, 1989, pp. 207-215, https://doi.org/10.1007/BFb0024945. · Zbl 0991.49500
[3] F. Bekkal Brikci, J. Clairambault, B. Ribba, and B. Perthame, An age-and-cyclin-structured cell population model for healthy and tumoral tissues, J. Math. Biol., 57 (2008), pp. 91-110, https://doi.org/10.1007/s00285-007-0147-x. · Zbl 1148.92014
[4] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), pp. 149-169, https://doi.org/10.1016/0022-1236(89)90005-0. · Zbl 0707.35060
[5] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), pp. 641-655, https://doi.org/10.1080/03605309208820857. · Zbl 0812.35043
[6] L. Boccardo, T. Gallouët, and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), pp. 539-551, https://doi.org/10.1016/S0294-1449(16)30113-5. · Zbl 0857.35126
[7] A. Bressan, G. M. Coclite, and W. Shen, A multidimensional optimal-harvesting problem with measure-valued solutions, SIAM J. Control Optim., 51 (2013), pp. 1186-1202, https://doi.org/10.1137/110853510. · Zbl 1268.49002
[8] A. Bressan and W. Shen, Measure-valued solutions for a differential game related to fish harvesting, SIAM J. Control Optim., 47 (2008), pp. 3118-3137, https://doi.org/10.1137/07071007X. · Zbl 1176.49039
[9] A. Bressan and W. Shen, Measure-valued solutions to a harvesting game with several players, in Advances in Dynamic Games, Ann. Internat. Soc. Dynam. Games 11, Birkhäuser, Boston, 2011, pp. 399-423, https://doi.org/10.1007/978-0-8176-8089-3_20. · Zbl 1218.91132
[10] A. Bressan and V. Staicu, On the competitive harvesting of marine resources, SIAM J. Control Optim., 57 (2019), pp. 3961-3984, https://doi.org/10.1137/18M1192949. · Zbl 1430.35097
[11] A. Camacho and S. Jerez, Bone metastasis treatment modeling via optimal control, J. Math. Biol., 78 (2019), pp. 497-526, https://doi.org/10.1007/s00285-018-1281-3. · Zbl 1410.37070
[12] G. M. Coclite, G. Devillanova, and S. Solimini, Measure valued solutions for an optimal harvesting problem, J. Math. Pures Appl. (9), 142 (2020), pp. 204-228, https://doi.org/10.1016/j.matpur.2020.08.004. · Zbl 1464.35358
[13] G. M. Coclite and M. Garavello, A time-dependent optimal harvesting problem with measure-valued solutions, SIAM J. Control Optim., 55 (2017), pp. 913-935, https://doi.org/10.1137/16M1061886. · Zbl 1375.35584
[14] G. M. Coclite, M. Garavello, and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), pp. 865-900, https://doi.org/10.3934/dcdss.2018053. · Zbl 1405.35099
[15] G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 28 (1999), pp. 741-808, also available online from http://www.numdam.org/item?id=ASNSP_1999_4_28_4_741_0. · Zbl 0958.35045
[16] A. Dall’Aglio, Approximated solutions of equations with \(L^1\) data. Application to the \(H\)-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4), 170 (1996), pp. 207-240, https://doi.org/10.1007/BF01758989. · Zbl 0869.35050
[17] M. Deville, R. Natalini, and C. Poignard, A continuum mechanics model of enzyme-based tissue degradation in cancer therapies, Bull. Math. Biol., 80 (2018), pp. 3184-3226, https://doi.org/10.1007/s11538-018-0515-2. · Zbl 1404.92092
[18] J. Droniou, A. Porretta, and A. Prignet, Parabolic capacity and soft measures for nonlinear equations, Potential Anal., 19 (2003), pp. 99-161, https://doi.org/10.1023/A:1023248531928. · Zbl 1017.35040
[19] N. Dunford and J. T. Schwartz, Linear Operators. Part \textupI: General Theory, John Wiley & Sons, New York, 1988. · Zbl 0635.47001
[20] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, RI, 2010, https://doi.org/10.1090/gsm/019. · Zbl 1194.35001
[21] E. Fernández-Cara, J. Límaco, and L. Prouvée, Optimal control of a two-equation model of radiotherapy, Math. Control Relat. Fields, 8 (2018), pp. 117-133, https://doi.org/10.3934/mcrf.2018005. · Zbl 1407.49072
[22] A. Friedman and X. Lai, Antagonism and negative side-effects in combination therapy for cancer, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), pp. 2237-2250, https://doi.org/10.3934/dcdsb.2019093. · Zbl 1418.35386
[23] A. Friedman and X. Lai, Free boundary problems associated with cancer treatment by combination therapy, Discrete Contin. Dyn. Syst., 39 (2019), pp. 6825-6842, https://doi.org/10.3934/dcds.2019233. · Zbl 1425.35240
[24] S. L. Hollis, R. H. Martin, Jr., and M. Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), pp. 744-761, https://doi.org/10.1137/0518057. · Zbl 0655.35045
[25] J. Keener and J. Sneyd, Mathematical Physiology. Vol. \textupI: Cellular Physiology, 2nd ed., Interdiscip. Appl. Math. 8, Springer, New York, 2009, https://doi.org/10.1007/978-0-387-79388-7. · Zbl 1273.92017
[26] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), pp. 399-415, https://doi.org/10.1016/0022-5193(70)90092-5. · Zbl 1170.92306
[27] U. Ledzewicz, H. Maurer, and H. Schättler, Optimal combined radio- and anti-angiogenic cancer therapy, J. Optim. Theory Appl., 180 (2019), pp. 321-340, https://doi.org/10.1007/s10957-018-1426-y. · Zbl 1409.49036
[28] L. Michaelis and L. M. I. Menten, Die kinetic der invertinwirkung, Biochem. Z., 49 (1913), pp. 333-369.
[29] J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), pp. 1128-1144, https://doi.org/10.1137/0520075. · Zbl 0692.35055
[30] J. D. Murray, Mathematical Biology, Biomathematics 19, Springer, Berlin, 1989, https://doi.org/10.1007/978-3-662-08539-4. · Zbl 0682.92001
[31] J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, 3rd ed., Interdiscip. Appl. Math. 18, Springer, New York, 2003. · Zbl 1006.92002
[32] B. Perthame, Transport Equations in Biology, Front. Math., Birkhäuser, Basel, 2007. · Zbl 1185.92006
[33] B. Perthame, Parabolic Equations in Biology: Growth, Reaction, Movement and Diffusion, Lect. Notes Math. Model. the Life Sci., Springer, Cham, 2015, https://doi.org/10.1007/978-3-319-19500-1. · Zbl 1333.35001
[34] W. Rudin, Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991. · Zbl 0867.46001
[35] H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies: An Application of Geometric Methods, Interdiscip. Appl. Math. 42, Springer, New York, 2015, https://doi.org/10.1007/978-1-4939-2972-6. · Zbl 1331.92008
[36] J. Simon, Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl. (4), 146 (1987), pp. 65-96, https://doi.org/10.1007/BF01762360. · Zbl 0629.46031
[37] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), pp. 189-258, also available online from http://www.numdam.org/item?id=AIF_1965__15_1_189_0. · Zbl 0151.15401
[38] H. F. Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. (6), 8 (1975), pp. 295-310. · Zbl 0312.35043
[39] X.-Q. Zhao, Dynamical Systems in Population Biology, 2nd ed., CMS Books Math./Ouvrages Math. SMC, Springer, Cham, 2017, https://doi.org/10.1007/978-3-319-56433-3. · Zbl 1393.37003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.