×

Spatially varying multifeedback for robust signaling. (English) Zbl 1472.92059

Summary: Elaborate regulatory feedback processes are thought to make biological development robust, that is, resistant to changes induced by sustained genetic or environmental perturbations. How this might be accomplished is still not completely understood, especially when models of some known feedback processes have been shown, some analytically and others by numerical simulations, to be ineffective in promoting robust signaling. By working with nonlocal feedback processes, combinations of two of these ineffective feedback processes were found to ensure robustness as measured by a well-defined robustness index for the Dpp-Tkv (decapentaplegic-thickvein) signaling in the wing imaginal disc of Drosophila fruit flies. In this paper, we show that there are also spatially varying multifeedback combinations of individually ineffective components that are similarly successful. The analysis of these Hill function type multifeedback models are found to be much more challenging mathematically as the relevant boundary-value problem remains nonlinear even for systems in a steady state of low receptor occupancy.

MSC:

92C15 Developmental biology, pattern formation
93B52 Feedback control
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] EntchevEV, SchwabedissenA, Gonzalez‐GaitanM. Gradient formation of the TGF‐beta homolog Dpp. Cell. 2000;103:981‐991.
[2] GurdonJB, BourillotPY. Morphogen gradient interpretation. Nature. 2001;413:797‐803.
[3] HouchmandzadehB, WieschausE, LeiblerS. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature. 2002;415:798‐802.
[4] LecuitT, CohenSM. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development. 1998;125:4901‐4907.
[5] TelemanAA, CohenAM. Dpp gradient formation in the Drosophila wing imaginal disc. Cell. 2000;103:971‐980.
[6] LanderAD, NieQ, WanFYM. Do morphogen gradients arise by diffusion?Dev Cell. 2002;2:785‐796.
[7] HamaratogluaF, AffolterbM, PyrowolakisG. Dpp/BMP signaling in flies: from molecules to biology. Sem Cell Dev Biol. 2014;32:128‐13.
[8] LanderAD, NieQ, WanFYM. Spatially distributed morphogen production and morphogen gradient formation. Math Biosci Eng (MBE). 2005;2:239‐262. · Zbl 1072.92016
[9] WolpertL, BeddingtonR, JesselT, LawrenceP, MeyerowitzE, SmithJ. Principles of Development. 2nd ed. Oxford University Press; 2002.
[10] BiehsB, FrançoisV, BierE. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis. Genes Dev. 1996;10:2922‐2934.
[11] LanderAD, NieQ, WanFYM, ZhangY‐T. Localized ectopic expression of Dpp receptors in a Drosophila embryo. Stud Appl Math. 2009;123:175‐214. · Zbl 1167.92003
[12] LouY, NieQ, WanFYM. Effects of Sog on Dpp‐receptor binding. SIAM J Appl Math. 2005;65:1748‐1771. · Zbl 1072.92007
[13] MarquesG, MusacchioM, ShimellMJ, Wunnenberg‐StapletonK, ChoKW, O’ConnorMB. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell. 1997;91:417‐426.
[14] LanderAD, LoW‐C, NieQ, WanFYM. The measures of success: constraints, objective, and tradeoffs in morphogen‐mediated patterning. Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a002022.
[15] MorimuraS, MavesL, ChenY, HoffmannFM. Decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression. Dev Biol. 1996;177:136‐151.
[16] ZhouS, LoWC, SuhalimJL, et al. Free extracellular diffusion creates the Dpp morphogen gradient of the Drosophila wing disc. Curr Biol. 2012;22(8):668‐675.
[17] LanderAD, NieQ, WanFYM. Internalization and end flux in morphogen gradient formation. J Comp Appl Math. 2006;190:232‐251. · Zbl 1082.92011
[18] vonDassowG, MeirE, MunroEM, OdellGM. The segment polarity network is a robust developmental module. Nature. 2000;406:188‐192.
[19] vonDassowG, OdellGM. Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J Exp Zool. 2002;294:179‐215.
[20] EldarA, RosinD, ShiloBZ, BarkaiN. Self‐enhanced ligand degradation underlies robustness of morphogen gradients. Dev Cell. 2003;5:635‐646.
[21] EldarA, ShiloBZ, BarkaiN. Elucidating mechanisms underlying robustness of morphogen gradients. Curr Opin Genet Dev. 2004;14:435‐439.
[22] IngoliaNT. Topology and robustness in the Drosophila segment polarity network. PLoS Biol. 2004;2:e123.
[23] LanderAD, NieQ, VargasB, WanFYM. Size‐normalized robustness of Dpp gradient in Drosophila wing imaginal disc. JoMMS. 2011;6:321‐350.
[24] LeiJ‐Z, WanFYM, LanderAD, NieQ. Robustness of signaling gradient in Drosophila wing imaginal disc. J Discret Contin Dyn Syst Series B (DCDS‐B). 2011;16(3):835‐866. · Zbl 1223.92009
[25] LeiJ‐Z, WangD, SongY, NieQ, WanFYM. Robustness of morphogen gradients with “Bucket Brigade” transport through membrane‐associated non‐receptors. J Discret Contin Dyn Syst Series B (DCDS‐B). 2013;18(3):721‐739. · Zbl 1325.34027
[26] OgisoY, TsuneizumiK, MasudaN, SatoM, TabataT. Robustness of the Dpp morphogen activity gradient depends on negative feedback regulation by the inhibitory Smad, Dad. Dev Growth Differ. 2011;53(5):668‐678.
[27] SimonyanA. Non‐Receptors, Feedback, and Robust Signaling Gradients in Biological Tissue Patterning [Ph.D. thesis]. UC Irvine; 2015.
[28] SimonyanA, WanFYM. Transient feedback and robust signaling gradients. Int J Num Anal Modeling, Series B. 2016;13(2):175‐200.
[29] WanFYM. The necessity and benefits of multiple feedback for robust biological development. Stud Appl Math. 2019;143(1):3‐41. · Zbl 1423.35368
[30] FreemanM. Feedback control of intercellular signaling in development. Nature. 2000;408:313‐331.
[31] PerrimonN, McMahonAP. Negative feedback mechanisms and their roles during pattern formation. Cell. 1999;97:13‐16.
[32] LanderAD, WanFYM, NieQ. Multiple paths to morphogen gradient robustness. University of California Irvine; 2005. Preprint. https://eee.uci.edu/11s/45869/home/Draft5.pdf.
[33] KhongM, WanFYM. Negative feedback in morphogen gradients. In: HsiehD‐Y (ed.), ZhangM (ed.), SunW (ed.), eds. Frontier of Applied Mathematics. World Scientific; 2007:29‐51.
[34] KushnerT, SimonyanA, WanFYM. A new approach to feedback for robust signaling gradients. Stud Appl Math. 2014;133(1):18‐51. · Zbl 1328.92026
[35] LanderAD, NieQ, Sanchez‐TapiaC, SimonyanA, WanFYM. Regulatory feedback on receptor and non‐receptor synthesis for robust signaling. Dev Dyn. 2020;249(3):383‐409. https://doi.org/10.1002/dvdy. · doi:10.1002/dvdy
[36] Ben‐ZviD, BarkaiN. Scaling of mporphogen gradient by an expansion‐repression integral feedback control. Proc Natl Acad Sci USA. 2010;107:6924‐6929. · Zbl 1205.93108
[37] Ben‐ZviD, PyrowolakisG, BarkaiN, ShiloBZ. Expansion‐repression mechanism for scaling the Dpp activation gradient in Drosophila wing imaginal discs. Curr Biol. 2011;21:1391‐1396.
[38] WortmanJC, NahmadM, ZhangPC, LanderAD, YuCC. Expanding signaling molecule wavefront model of cell polarization in the Drosophila wing primordium. PLoS Comput Biol. 2017;13(7):e1005610. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005610.
[39] CadiganKM, FishMP, RulifsonEJ, NusseR. Wingless repression of Drosophila frizzled 2 expression shapes the wingless morphogen gradient in the wing. Cell. 1998;93:767‐777.
[40] TsuneizumiK, NakayamaT, KamoshidaY, KornbergTB, ChristianJL, TabataT. Daughters against Dpp modulates Dpp organizing activity in Drosophila wing development. Nature. 1997;389:627‐631.
[41] LanderAD, NieQ, VargasB, WanFYM. Aggregation of a distributed ligand source and morphogen gradients. Stud Appl Math. 2005;114:343‐374. · Zbl 1145.35402
[42] RaffertyLA, UmulisDM. Regulation of BMP activity and range in Drosophila wing development. Curr Opin Cell Biol. 2012;24(2):158‐165.
[43] GiraldezAJ, CopleyRR, CohenSM. HSPG modification by the secreted enzyme Notum shapes the wingless morphogen gradient. Dev Cell. 2002;2:667‐676.
[44] BornemannDJ, DuncanJE, StaatzW, SelleckS, WarriorR. Abrogation of heparan sulfate synthesis in Drosophila disrupts the wingless, hedgehog and decapentaplegic signaling pathways. Development. 2004;131:1927‐1938.
[45] ParkPW, ReizesO, BernfieldM. Cell surface heparan sulfate proteoglycans: selective regulators of ligand‐receptor encounters. J Biol Chem. 2000;275:29923‐29926.
[46] SasaiY, LuB, SteinbeisserH, De RobertisEM. Regulation of neural induction by the Chd and Bmp‐4 antagonistic patterning signals in Xenopus. Nature. 1995;376:333‐336.
[47] ZhangJL, QiuLY, KotzschA, et al. Crystal structure analysis reveals how the Chordin family member crossveinless 2 blocks BMP‐2 receptor binding. Dev Cell. 2008;14:739‐750.
[48] AmthorH, ChristB, Rashid‐DoubellF, KempCF, LangE, PatelK. Follistatin regulates bone morphogenetic protein‐7(BMP‐7) activity to stimulate embryonic muscle growth. Dev Biol. 2003;243:115‐127.
[49] IemuraS‐i, YamamotoTS, TakagiC, et al. Direct binding of follistatin to a complex of bone‐morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Curr Issue. 1998;95(16):9337‐9342.
[50] PentekJ, ParkerL, WuA, AroraK. Follistatin preferentially antagonizes activin rather than BMP signaling in Drosophila. Genesis. 2009;47(4):261‐273.
[51] WangX‐P, SuomalainenM, JorgezCJ, MatzukMM, WernerS, Thesleff1I. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell. 2004;7:719‐730.
[52] LimDA, TramontinAD, TrevejoJM, HerreraDG, Garcıá‐VerdugoJM, Alvarez‐BuyllaA. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000;28:713‐726.
[53] ZehentnerBK, HaussmannA, BurtscherH. The bone morphogenetic protein antagonist Noggin is regulated by Sox9 during endochondral differentiation. Dev Growth Differ. 2002;44(1):1‐9.
[54] ZimmermanLB, De Jesus‐EscobarJM, HarlandRM. The Spemann organizer signal noggin binds and inactivates bone morpogenetic protein 4. Cell. 1996;86:599‐606.
[55] BernfieldM, GötteM, ParkPW, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729‐777.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.