×

A new approach for solving heat conduction under zero and non-zero initial conditions. (English) Zbl 1537.80017

Summary: This paper provides a new approach for the analysis of transient heat diffusion arising from conduction. The diffusion is subject to zero and non-zero initial conditions in a two-dimensional domain, containing confined heterogeneous subdomains. This system can be subjected to a heat source. A new formulation is presented, in the frequency domain. It allows coupling between the boundary element method (BEM) and other methods (such as the method of fundamental solutions (MFS), the finite element method (FEM), the finite difference method (FDM), the meshless Petrov-Galerkin (MLGP) method, the virtual element method (VEM), and analytical formulations). The BEM is used for the homogeneous exterior domain and the other method is used to evaluate the solutions for the non-homogeneous confined subdomains, to overcome the specific limitations of each of these methods. An inverse fast Fourier transform was used to provide the time domain responses and the results were then compared with those of reference solutions. It was then possible to demonstrate that the proposed algorithm could be used in the frequency and time domains by performing simulation analyses to study heat diffusion in the neighbourhood of heterogeneous inclusions within a solid medium.

MSC:

80M15 Boundary element methods applied to problems in thermodynamics and heat transfer
65M38 Boundary element methods for initial value and initial-boundary value problems involving PDEs
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Carslaw, H. S.; Jaeger, J. C., Conduction of heat in solids (1959), Oxford University Press: Oxford University Press Oxford, Second Edition · Zbl 0972.80500
[2] Serra, C.; Tadeu, A.; Simões, N., Heat transfer modelling using analytical solutions for infrared thermography applications in multilayered buildings systems, Int J Heat Mass Transf, 115PB, 471-478 (2017)
[3] Fan, H.; Tang, S.; Hua, J.; Yu, H., Analytical method for heat conduction problem with internal heat source in irregular domains, Adv Mech Eng, 5, Article 173237 pp. (2015)
[4] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary elements techniques: theory and applications in Engineering (1984), Springer: Springer Berlin · Zbl 0556.73086
[5] Hadjesfandiari, A.; Hadjesfandiari, A. R.; Dargush, G. F., Boundary element formulation for plane problems in size-dependent piezoelectricity, Int J Numer Methods Eng, 108, 7, 667-694 (2016) · Zbl 07874372
[6] Gilvey, B.; Trevelyan, G. H., Singular enrichment functions for Helmholtz scattering at corner locations using the boundary element method, Int J Numer Methods Eng, 121, 3, 519-533 (2020) · Zbl 07843208
[7] Tadeu, A.; Kausel, E., Green’s functions for two-and-a-half dimensional elastodynamic problems, J Eng Mech, 126, 10, 1093-1097 (2000)
[8] António, J.; Godinho, L.; Tadeu, A., Acoustic insulation provided by circular and infinite plane walls, J Sound Vib, 273, 3, 681-691 (2004)
[9] De Lacerda, L. A.; Wrobel, L. C.; Mansur, W. J., A dual boundary element formulation for sound propagation around barriers over an impedance plane, J Sound Vib, 202, 2, 235-247 (1997) · Zbl 1235.76087
[10] Holm, H.; Stephan, E. P., A boundary element method for electromagnetic transmission problems, Appl Anal, 56, 3-4, 213-226 (1995) · Zbl 0832.35137
[11] Tadeu, A.; Simões, N.; Simões, I., Coupling BEM/TBEM and MFS for the simulation of transient conduction heat transfer, Int J Numer Methods Eng, 84, 2, 179-213 (2010) · Zbl 1202.80024
[12] Portela, C. C.J; Jarek, A.; Lacerda, L. A., Coupling of the boundary element method with a hybrid method for inverse stress analysis of pipelines, WIT Trans Eng Sci, 126, 137-148 (2019), online
[13] Tadeu, A.; António, J.; Castro, I., Coupling BEM/TBEM and MFS for the numerical simulation of acoustic wave propagation, Eng Anal Boundary Element Method, 34, 4, 405-416 (2010) · Zbl 1244.76061
[14] Pettres, R.; Lacerda, L. A.; Carrer, J. A.M., A boundary element formulation for the heat equation with dissipative and heat generation terms, Eng Anal Boundary Elements, 51, 191-198 (2015) · Zbl 1403.65062
[15] Raghu Kumar, A. Y.; Jagath, M. C., Boundary element method for thermal problems: review, Int J Eng Res Technol, 2, 10, 2486-2496 (2013)
[16] Zhang, R.; Guo, R., Multiphase hybrid stress finite element analysis of heterogeneous media by simple mesh: one element with one interface, Int J Numer Methods Eng, 121, 12, 2767-2782 (2020) · Zbl 07841941
[17] Mitsoulis, E.; Vlachopoulos, J., The finite element method for flow and heat transfer, Adv Polym Technol, 4, 2, 107-121 (1984)
[18] Cai, Z.; Mandel, J.; McCormick, S., The finite volume element method for diffusion equations on general triangulations, SIAM J Numer Anal, 28, 2, 392-403 (1991) · Zbl 0729.65086
[19] Ozisik, M. N., Finite Difference Methods in Heat Transfer (1994), CRC Press Inc: CRC Press Inc USA, 1994 · Zbl 0855.65097
[20] Tseng, A. A.; Gu, S. X., A finite difference scheme with arbitrary mesh systems for solving high-order partial differential equations, Comput Struct, 31, 3, 319-328 (1989) · Zbl 0674.73062
[21] Cascio, M. L.; Milazzo, A.; Benedetti, I., A hybrid virtual-boundary element formulation for heterogeneous materials, Int J Mech Sci, 199, Article 106404 pp. (2021)
[22] Da Veiga, B. L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math Models Methods Appl Sci, 23, 01, 199-214 (2013) · Zbl 1416.65433
[23] Da Veiga, B. L.; Brezzi, F.; Marini, L. D.; Russo, A., The hitchhiker’s guide to the virtual element method, Math Models Methods Appl Sci, 24, 08, 1541-1573 (2014) · Zbl 1291.65336
[24] Da Veiga, L. B.; Russo, A.; Vacca, G., The virtual element method with curved edges, ESAIM: Math Modell Numer Anal, 53, 2, 375-404 (2019) · Zbl 1426.65163
[25] Hematiyan, M. R.; Arezou, M.; Dezfouli, N. K.; Khoshroo, M., Some remarks on the method of fundamental solutions for two-dimensional elasticity, CMES, 121, 2, 661-686 (2019)
[26] Wu, X. H.; Tao, W. Q., Meshless method based on the local weak forms for steady state heat conduction problems, Int J Heat Mass Transf, 51, 3103-3118 (2019) · Zbl 1144.80356
[27] Divo, E.; Kassab, A. J., Boundary Element Method for Heat Conduction: with Applications in Non-Homogeneous Media, Topics in Engineering Series, 44 (2003), WIT Press: WIT Press Billerica · Zbl 1012.80013
[28] Tanaka, M.; Matsumoto, T.; Sud, Y., A dual reciprocity boundary element method applied to the steady-state heat conduction problem of functionally gradient materials (Study on two-dimensional problems), Trans Jpn Soc Mech Eng, 67A, 662, 1589-1594 (2001)
[29] Mera, N. S.; Elliott, L.; Ingham, D. B.; Lesnic, D., Singularities in anisotropic steady-state heat conduction using a boundary element method, Int J Numer Methods Eng, 53, 10, 2413-2427 (2002) · Zbl 0992.80013
[30] Manolis, G. D., A comparative study on three boundary element method approaches to problems in elastodynamics, Int J Numer Methods Eng, 19, 1, 73-91 (1983), 1983 · Zbl 0497.73085
[31] Beskos, D. E., Boundary element method in dynamic analysis, Appl Mech Rev, 40, 1, 1-23 (1987)
[32] Chang, Y. P.; Kang, C. S.; Chen, D. J., The use of fundamental Green’s functions for solution of problems of heat conduction in anisotropic media, Int J Heat Mass Transfer, 16, 10, 1905-1918 (1973) · Zbl 0263.35041
[33] Tanaka, M.; Matsumoto, T.; Yang, Q. F., Time-stepping boundary element method applied to 2-D transient heat conduction problems, Appl Math Modell, 18, 10, 569-576 (1994) · Zbl 0817.65075
[34] Rizzo, F. J.; Shippy, D. J., A method of solution for certain problems of transient heat conduction, AIAA J, 8, 11, 2004-2009 (1970) · Zbl 0237.65074
[35] Sutradhar, A.; Paulino, G. H.; Gray, L. J., Transient heat conduction in homogeneous and nonhomogeneous materials by the Laplace transform Galerkin boundary element method, Eng Anal Boundary Elem, 26, 2, 119-132 (2002) · Zbl 0995.80010
[36] Jacinto, C. J.; de Lacerda, L. A.; Tadeu, A., Coupling the BEM and analytical solutions for the numerical simulation of transient heat conduction in a heterogeneous solid medium, (*1) Eng Anal Boundary Elements, 124, 110-123 (2021) · Zbl 1464.80027
[37] Hill, L. R.; Farris, T. N., Fast Fourier transform of spectral boundary elements for transient heat conduction, Int J Numer Methods Heat Fluid Flow, 5, 9, 813-827 (1995), 1995 · Zbl 0884.76047
[38] Tadeu, A.; Stanak, P.; Sladek, J.; Sladek, V.; Prata, J.; Simões, N., A coupled BEM-MLPG technique for the thermal analysis of non-homogeneous media, CMES, 93, 6, 489-516 (2013) · Zbl 1356.74242
[39] Santos, P.; António, J.; Tadeu, A., Wave scattering by 2D smooth topographical elastic deformations caused by a point blast source, CMES, 1, 4, 79-98 (2000)
[40] Phinney, R. A., Theoretical calculation of the spectrum of first arrivals in the layered elastic medium, J Geophys Res, 70, 20, 5107-5123 (1965)
[41] Sladek, J.; Sladek, V.; Zhang, C. H., Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation, Comput Mater Sci, 28, 494-504 (2003)
[42] Sladek, J.; Sladek, V.; Krivacek, J.; Zhang, C. H., Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids, Comput Mech, 32, 169-176 (2003) · Zbl 1038.80510
[43] Wrobel, L. C.; Brebbia, C. A., A formulation of the boundary elements method for axisymmetric transient heat conduction, Int J Heat Mass Transf, 24, 5, 843-850 (1981) · Zbl 0467.35050
[44] Tadeu, A. J.B.; Santos, P. F.A.; Kausel, E., Closed-form integration of singular terms for constant, linear and quadratic boundary elements - Part I: SH wave propagation, Eng Anal Boundary Elem, 23, 8, 671-681 (1999) · Zbl 0968.74077
[45] Tadeu, A. J.B.; Santos, P. F.A.; Kausel, E., Closed-form integration of singular terms for constant, linear and quadratic boundary elements - Part II: SV-P wave propagation, Eng Anal Boundary Elem, 23, 9, 757-768 (1999) · Zbl 0973.74087
[46] Simões, N.; Tadeu, A.; António, J.; Mansur, W., Transient heat conduction under nonzero initial conditions: a solution using the boundary element method in the frequency domain, Eng Anal Boundary Elem, 36, 562-567 (2012) · Zbl 1352.65596
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.