×

Estimates of Lebesgue constants for Lagrange interpolation processes by rational functions under mild restrictions to their fixed poles. (English) Zbl 1532.30010

The authors study the Lagrange interpolation problem on one or several intervals by rational functions with fixed poles. They summarize some of the main important known results of one of the authors an other authors on the estimation of the Lebesgue constants when the location of the poles of the rational approximants are located “not too close” to the interpolation interval. The main purpose of this paper is to generalize those results and let poles “closer” to the interpolation interval. More precisely, to estimate the Lebesgue constants when the poles of the rational approximants have finitely many accumulation points on the interpolation interval. By using an analog of the inverse polynomial image method for rational functions with fixed poles they show that the estimates previously obtained for the more restrictive situations analyzed in the mentioned known results, are also valid in the more general situation analyzed in this paper.

MSC:

30E05 Moment problems and interpolation problems in the complex plane
30E10 Approximation in the complex plane

Software:

Algorithm 882

References:

[1] Borwein, P.; Erdélyi, T., (Polynomials and Polynomial Inequalities. Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, vol. 161 (1995), Springer-Verlag: Springer-Verlag New York), x+480 · Zbl 0840.26002
[2] Brutman, L., Lebesgue functions for polynomial interpolation – a survey, Ann. Numer. Math., 4, 1-4, 111-127 (1997) · Zbl 0888.41001
[3] Dzyadyk, V. K., Approximation Methods for Solutions of Differential and Integral Equations, ii+325 (1995), VSP, Utrecht · Zbl 0839.65074
[4] Goluzin, G. M., (Geometric Theory of Functions of a Complex Variable. Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, vol. 26 (1969), American Mathematical Society, Providence, R.I.), vi+676 · Zbl 0183.07502
[5] Grinshpun, Z. S., Ortogonal’Nye Mnogochleny Bernshteĭna- Sege, 176 (1992), Gylym, Alma Ata · Zbl 0854.42018
[6] Kroó, A.; Szabados, J., Inverse polynomial mappings and interpolation on several intervals, J. Math. Anal. Appl., 436, 2, 1165-1179 (2016) · Zbl 1332.41005
[7] Lukashov, A., Rational interpolation processes on two intervals, Izv. Vyssh. Uchebn. Zaved. Mat., 5, 35-42 (1998) · Zbl 1497.41011
[8] Lukashov, A. L., Inequalities for the derivatives of rational functions on several intervals, Izv. Ross. Akad. Nauk Ser. Mat., 68, 3, 115-138 (2004) · Zbl 1088.42016
[9] Lukashov, A., Rational interpolation processes on several intervals, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 5, 1-2, 34-48 (2005)
[10] Lukashov, A. L., Exact solutions of some extremal problems of approximation theory, (Approximation Theory XIII: San Antonio 2010. Approximation Theory XIII: San Antonio 2010, Springer Proc. Math., vol. 13 (2012), Springer, New York), 221-229 · Zbl 1250.41016
[11] Lukashov, A.; Szabados, J., The order of lebesgue constant of Lagrange interpolation on several intervals, Period. Math. Hungar., 72, 2, 103-111 (2016) · Zbl 1389.41006
[12] Mastroianni, G.; Milovanović, G. V., (Interpolation Processes. Interpolation Processes, Springer Monographs in Mathematics (2008), Springer-Verlag: Springer-Verlag Berlin), xiv+444, Basic theory and applications · Zbl 1154.41001
[13] Min, G., Lagrange interpolation and quadrature formula in rational systems, J. Approx. Theory, 95, 1, 123-145 (1998) · Zbl 0912.41003
[14] Privalov, A. A., Teoriya Interpolirovaniya FunktsiĬ. Kniga 1, 2 (1990), Saratov. Gos. Univ.: Saratov. Gos. Univ. Saratov · Zbl 0721.41001
[15] Ransford, T., (Potential Theory in the Complex Plane. Potential Theory in the Complex Plane, London Mathematical Society Student Texts, vol. 28 (1995), Cambridge University Press: Cambridge University Press Cambridge), x+232 · Zbl 0828.31001
[16] Rouba, Y., Approximation of convex functions of the class Lip \(\alpha\) by rational functions with fixed poles, Izv. BSSR. Ser. Fizikomatematicheskikh Nauk., 3, 121-122 (1977) · Zbl 0355.41021
[17] Rouba, Y.; Smatrytski, K.; Dirvuk, Y., On a Lebesgue constant of interpolation rational process at the Chebyshev - Markov nodes, J. Belarus. State Univ. Math. Inform., 3, 12-20 (2018) · Zbl 1436.41005
[18] Rovba, Y.; Dirvuk, Y., Estimation of the Lebesgue constant for the rational Lagrange interpolation processes through the Chebyshev-Markov nodes, Vestzi Natz. Belarusi. Ser. Fizikamatematichnykh Navuk., 4, 25-31 (2015)
[19] Rusak, V., On the convergence of a generalized interpolation polynomial, Dokl. Akad. Nauk BSSR, 6, 209-211 (1962) · Zbl 0144.31601
[20] Rusak, V. N., Ratsional’Nye Funktsii Kak Apparat Priblizheniya, 174 (1979), Beloruss. Gos. Univ.: Beloruss. Gos. Univ. Minsk
[21] Starovoitov, A., On rational interpolation with fixed poles, Izv. BSSR. Ser. Fizikomatematicheskikh Nauk., 6, 105-106 (1983)
[22] A. Starovoitov, Approximation By Rational Functions with Prescribed Poles, in: Thesis for the degree of Candidate of Science, Minsk, 1985, (in Russian).
[23] Szabados, J.; Vértesi, P., Interpolation of Functions, xii+305 (1990), World Scientific Publishing Co., Inc., Teaneck, NJ · Zbl 0721.41003
[24] Totik, V., The polynomial inverse image method, (Approximation Theory XIII: San Antonio 2010. Approximation Theory XIII: San Antonio 2010, Springer Proc. Math., vol. 13 (2012), Springer, New York), 345-365 · Zbl 1268.41008
[25] van Deun, J.; Deckers, K.; Bultheel, A.; Weideman, J. C., Algorithm 882: near-best fixed pole rational interpolation with applications in spectral methods, ACM Trans. Math. Software, 35, 2 (2009), Art. 14, 21
[26] Zygmund, A., (Trigonometric Series. Vol. I, II. Trigonometric Series. Vol. I, II, Cambridge Mathematical Library (2002), Cambridge University Press: Cambridge University Press Cambridge), With a foreword by Robert A. Fefferman · Zbl 1084.42003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.