×

Hypergeometric decomposition of symmetric \(K3\) quartic pencils. (English) Zbl 1441.14128

This paper studies the hypergeometric functions associated to the five one-parameter deformations of Delsatre \(K3\) quartic surfaces. These families are labelled as \(F_4, F_1L_3, F_2L_2, L_2L_2\) and \(L_4\), and for each of them, there is a discrete group of symmetriies acting symplectically. The main theorem shows that hypergeometric functions are associated to this set of Delsarte hypersurface pencils in two ways as Picard-Fuchs differential equations and as traces of Frobenius.
The Picard-Fuchs differential equations are explicitly determined for these families. Further, the zeta functions and \(L\)-functions of these families are computed explicitly. The method is computational on finite Gauss sums, and finite hypergeometric sums, which give rise to hypergeometric motives.

MSC:

14J28 \(K3\) surfaces and Enriques surfaces
14Q10 Computational aspects of algebraic surfaces
33C05 Classical hypergeometric functions, \({}_2F_1\)
33D67 Basic hypergeometric functions associated with root systems

Software:

Magma

References:

[1] Berndt, B.; Evans, R.; Williams, K., Gauss and Jacobi Sums (1998), New York: Wiley, New York · Zbl 0906.11001
[2] Beukers, F., Fields of definition of finite hypergeometric functions, Hypergeometric Motives and Calabi-Yau Differential Equations (2018), New York: Springer, New York
[3] Beukers, F.; Cohen, H.; Mellit, A., Finite hypergeometric functions, Pure Appl. Math. Q., 11, 4, 559-589 (2015) · Zbl 1397.11162 · doi:10.4310/PAMQ.2015.v11.n4.a2
[4] Beukers, F.; Heckman, G., Monodromy for the hypergeometric function \(_nF_{n-1}\), Invent. Math., 95, 2, 325-354 (1989) · Zbl 0663.30044 · doi:10.1007/BF01393900
[5] Bini, G., Quotients of hypersurfaces in weighted projective space, Adv. Geom., 11, 4, 653-667 (2011) · Zbl 1235.14035 · doi:10.1515/advgeom.2011.029
[6] Bini, G.; Garbagnati, A., Quotients of the Dwork pencil, J. Geom. Phys., 75, 173-198 (2014) · Zbl 1314.14078 · doi:10.1016/j.geomphys.2013.10.001
[7] Bini, G.; van Geemen, B.; Kelly, TL, Mirror quintics, discrete symmetries and Shioda maps, J. Alg. Geom., 21, 401-412 (2012) · Zbl 1246.14054 · doi:10.1090/S1056-3911-2011-00544-4
[8] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symb. Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[9] Candelas, P., de la Ossa, X., Rodríguez Villegas, F.: Calabi-Yau manifolds over finite fields, I. arXiv:hep-th/0012233 (2000) · Zbl 1100.14032
[10] Candelas, P.; de la Ossa, X.; Rodríguez Villegas, F., Calabi-Yau manifolds over finite fields II, Calabi-Yau Varieties and Mirror Symmetry, 121-157 (2003), Providence: American Mathematical Society, Providence · Zbl 1100.14032
[11] Clemens, CH, A Scrapbook of Complex Curve Theory (2003), Providence: American Mathematical Society, Providence · Zbl 1030.14010
[12] Cohen, H., Number Theory Volume I: Tools and Diophantine Equations (2007), New York: Springer, New York · Zbl 1119.11001
[13] Cohen, H.: Counting points of Calabi-Yau Manifolds after P. X. de la Ossa, and F. Rodrigez-Villegas. unpublished notes, Candelas (2010)
[14] Costa, E.; Tschinkel, Y., Variation of Néron-Severi ranks of reductions of K3 surfaces, Exp. Math., 23, 4, 475-481 (2014) · Zbl 1311.14039 · doi:10.1080/10586458.2014.947054
[15] Cox, DA; Katz, S., Mirror Symmetry and Algebraic Geometry (1999), Providence: American Mathematical Society, Providence · Zbl 0951.14026
[16] Delsarte, J.: Nombre de solutions des équations polynomiales sur un corps fini. Sém. Bourbaki 39-01 (1951)
[17] Doran, CF; Greene, B.; Judes, S., Families of Quintic Calabi-Yau 3-folds with discrete symmetries, Commun. Math. Phys., 280, 675-725 (2008) · Zbl 1158.14034 · doi:10.1007/s00220-008-0473-x
[18] Doran, CF; Kelly, TL; Salerno, A.; Sperber, S.; Voight, J.; Whitcher, U., Zeta functions of alternate mirror Calabi-Yau families, Isr. J. Math., 228, 2, 665-705 (2018) · Zbl 1403.14055 · doi:10.1007/s11856-018-1783-0
[19] Duan, L.: Galois action on Néron-Severi Group of Dwork surfaces. arXiv:1809.08693 (2018) · Zbl 1455.11092
[20] Dwork, B., \(p\)-adic cycles, Inst. Hautes Études Sci. Publ. Math., 37, 27-115 (1969) · Zbl 0284.14008 · doi:10.1007/BF02684886
[21] Elkies, N. D., Schütt, M.: K3 families of high Picard rank. http://www2.iag.uni-hannover.de/ schuett/K3-fam.pdf (2008). Accessed 14 December 2017
[22] Furtado Gomida, E., On the theorem of Artin-Weil, Soc. Mat. São Paulo, 4, 267-277 (1951)
[23] Fuselier, J., Long, L., Ramakrishna, R., Swisher, H., Tu, F.-T.: Hypergeometric Functions over Finite Fields. arXiv:1510.02575 (2017) · Zbl 1443.11254
[24] Gährs, S., Picard-Fuchs equations of special one-parameter families of invertible polynomials, Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds, 285-310 (2013), New York: Springer, New York · Zbl 1302.14034
[25] Goodson, H., A complete hypergeometric point count formula for dwork hypersurfaces, J. Number Theory, 179, 142-171 (2017) · Zbl 1418.11157 · doi:10.1016/j.jnt.2017.03.018
[26] Goodson, H., Hypergeometric functions and relations to Dwork hypersurfaces, Int. J. Number Theory, 13, 2, 439-485 (2017) · Zbl 1419.11135 · doi:10.1142/S1793042117500269
[27] Greene, J., Hypergeometric functions over finite fields, Trans. Am. Math. Soc., 301, 1, 77-101 (1987) · Zbl 0629.12017 · doi:10.1090/S0002-9947-1987-0879564-8
[28] Griffiths, P., On the periods of certain rational integrals I, Ann. Math., 2, 90, 460-495 (1969) · Zbl 0215.08103 · doi:10.2307/1970746
[29] Igusa, J., Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. USA, 44, 312-314 (1958) · Zbl 0081.03601 · doi:10.1073/pnas.44.4.312
[30] Kadir, S.: The Arithmetic of Calabi-Yau manifolds and mirror symmetry. Oxford DPhil Thesis. arXiv:hep-th/0409202 (2004)
[31] Katz, N., Exponential Sums and Differential Equations (1990), Princeton: Princeton University Press, Princeton · Zbl 0731.14008
[32] Katz, NM, Another look at the Dwork family, Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, 89-126 (2009), Boston: Birkhäuser, Boston · Zbl 1195.14015
[33] Kelly, TL, Berglund-Hübsch-Krawitz Mirrors via Shioda Maps, Adv. Theor. Math. Phys., 17, 6, 1425-1449 (2013) · Zbl 1316.14076 · doi:10.4310/ATMP.2013.v17.n6.a8
[34] Kloosterman, R., The zeta function of monomial deformations of Fermat hypersurfaces, Algebra Number Theory, 1, 4, 421-450 (2007) · Zbl 1166.14016 · doi:10.2140/ant.2007.1.421
[35] Kloosterman, R.: Group actions on rigid cohomology with finite support—Erratum to “The zeta function of monomial deformations of Fermat hypersurfaces”. http://www.math.unipd.it/ klooster/ANT_erratum.pdf. Accessed 14 December 2017
[36] Kloosterman, R., Zeta functions of monomial deformations of Delsarte hypersurfaces, SIGMA, 13, 87, 22 (2017) · Zbl 1432.14019
[37] Koblitz, N., The number of points on certain families of hypersurfaces over finite fields, Comput. Math., 48, 3-23 (1983) · Zbl 0509.14023
[38] McCarthy, D., On a supercongruence conjecture of Rodríguez-Villegas, Proc. Am. Math. Soc., 140, 2241-2254 (2012) · Zbl 1354.11030 · doi:10.1090/S0002-9939-2011-11087-6
[39] McCarthy, D., Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Appl., 18, 6, 1133-1147 (2012) · Zbl 1276.11198 · doi:10.1016/j.ffa.2012.08.007
[40] McCarthy, D., The trace of Frobenius of elliptic curves and the \(p\)-adic gamma function, Pac. J. Math., 261, 1, 219-236 (2013) · Zbl 1296.11079 · doi:10.2140/pjm.2013.261.219
[41] McCarthy, D.: The number of \({\mathbb{F}}_p\)-points on Dwork hypersurfaces and hypergeometric functions. Res. Math. Sci. 4, Paper No. 4, 15 pp. (2017) · Zbl 1410.11082
[42] Miyatani, K., Monomial deformations of certain hypersurfaces and two hypergeometric functions, Int. J. Number Theory, 11, 8, 2405-2430 (2015) · Zbl 1332.14028 · doi:10.1142/S1793042115501122
[43] Naskręcki, B.: On a certain hypergeometric motive of weight 2 and rank 3. arXiv:1702.07738 (2017)
[44] Naskręcki, B.: On realisations of weight 0 hypergeometric motives of small degrees. Preprint
[45] Salerno, A.: Hypergeometric Functions in Arithmetic Geometry. PhD. Thesis, University of Texas at Austin (2009)
[46] Salerno, A., Counting points over finite fields and hypergeometric functions, Funct. Approx. Comment. Math., 49, 1, 137-157 (2013) · Zbl 1295.11074 · doi:10.7169/facm/2013.49.1.9
[47] Shioda, T., An explicit algorithm for computing the Picard number of certain algebraic surfaces, Am. J. Math., 108, 2, 415-432 (1986) · Zbl 0602.14033 · doi:10.2307/2374678
[48] Slater, LJ, Generalized Hypergeometric Functions (1966), Cambridge: Cambridge University Press, Cambridge · Zbl 0135.28101
[49] Voight, J.: Supplementary code. https://www.math.dartmouth.edu/ jvoight/magma/fiveK3fam.zip (2018)
[50] Weil, A., Numbers of solutions of equations in finite fields, Bull. Am. Math. Soc., 55, 497-508 (1949) · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.