×

The fine-grained complexity of approximately counting proper connected colorings (extended abstract). (English) Zbl 07914097

Wu, Weili (ed.) et al., Combinatorial optimization and applications. 16th international conference, COCOA 2023, Hawaii, HI, USA, December 15–17, 2023. Proceedings. Part II. Cham: Springer. Lect. Notes Comput. Sci. 14462, 123-136 (2024).
Summary: A \(k\)-proper connected 2-coloring for a graph is an edge bipartition which ensures the existence of at least \(k\) vertex disjoint simple alternating paths (i.e., paths where no two adjacent edges belong to the same partition) between all pairs of vertices. In this work, for every \(k \in \mathbb{N}_{>0} \), we show that exactly counting such colorings is #P-hard under many-one counting reductions, as well as #P-complete under many-one counting reductions for \(k=1\). Furthermore, for every \(k \in \mathbb{N}_{>0} \), we rule out the existence of a \(2^{o\left( \frac{n}{k^2}\right) }\) time algorithm for finding a \(k\)-proper connected 2-coloring of an order \(n\) graph under the ETH, or for exactly counting such colorings assuming the moderated Counting Exponential Time Hypothesis (#ETH) of (Dell et al.; ACM Trans. Algorithms 10(4); 2014). Finally, assuming the Exponential Time Hypothesis (ETH), and as a consequence of a recent result of (Dell & Lapinskas; ACM Trans. Comput. Theory 13(2); 2021), for every \(k \in \mathbb{N}_{>0}\) and every \(\epsilon > 0\), we are able to rule out the existence of a \(2^{o\left( \frac{n}{k^2}\right) }/\epsilon^2\) time algorithm for approximating the number of \(k\)-proper connected 2-colorings of an order \(n\) graph within a multiplicative factor of \(1 + \epsilon \).
For the entire collection see [Zbl 07831397].

MSC:

90C27 Combinatorial optimization

Software:

CALMA
Full Text: DOI

References:

[1] Aardal, KI; van Hoesel, SPM; Koster, AMCA; Mannino, C.; Sassano, A., Models and solution techniques for frequency assignment problems, Ann. Oper. Res., 153, 1, 79-129, 2007 · Zbl 1157.90005 · doi:10.1007/s10479-007-0178-0
[2] Abouelaoualim, A.; Das, KC; Faria, L.; Manoussakis, Y.; Martinhon, C.; Saad, R., Paths and trails in edge-colored graphs, Theoret. Comput. Sci., 409, 3, 497-510, 2008 · Zbl 1155.68053 · doi:10.1016/j.tcs.2008.09.021
[3] Andrews, E.; Lumduanhom, C.; Laforge, E.; Zhang, P., On proper-path colorings in graphs, J. Comb. Math. Comb. Comput., 97, 189-207, 2016 · Zbl 1347.05055
[4] Bang-Jensen, J.; Gutin, G., Alternating cycles and paths in edge-coloured multigraphs: a survey, Discrete Math., 165, 166, 39-60, 1997 · Zbl 0876.05057 · doi:10.1016/S0012-365X(96)00160-4
[5] Bang-Jensen, J.; Gutin, G., Alternating cycles and trails in 2-edge-coloured complete multigraphs, Discrete Math., 188, 1-3, 61-72, 1998 · Zbl 0956.05040 · doi:10.1016/S0012-365X(97)00274-4
[6] Baran, P., The beginnings of packet switching: some underlying concepts, IEEE Commun. Mag., 40, 7, 42-48, 2002 · doi:10.1109/MCOM.2002.1018006
[7] Barish, RD, On the Number of k-Proper Connected Edge and Vertex Colorings of Graphs, 2023, Math: Accepted for publication in Thai J, Math · Zbl 07829468
[8] Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan Press: New York, NY, 1st edn. (1976) · Zbl 1226.05083
[9] Borozan, V., Proper connection of graphs, Discrete Math., 312, 17, 2550-2560, 2012 · Zbl 1246.05090 · doi:10.1016/j.disc.2011.09.003
[10] Chartrand, G.; Johns, GL; McKeon, KA; Zhang, P., Rainbow connection in graphs, Math. Bohem., 133, 1, 85-98, 2008 · Zbl 1199.05106 · doi:10.21136/MB.2008.133947
[11] Chartrand, G.; Johns, GL; McKeon, KA; Zhang, P., The rainbow connectivity of a graph, Networks, 54, 2, 75-81, 2009 · Zbl 1205.05124 · doi:10.1002/net.20296
[12] Chou, WS; Manoussakis, Y.; Megalakaki, O.; Spyratos, M.; Tuza, Z., Paths through fixed vertices in edge-colored graphs, Mathématiques et Sciences Humaines, 127, 49-58, 1994 · Zbl 0826.68064
[13] Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlén, M.: Exponential time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms 10(4), 21:1-21:32 (2014) · Zbl 1398.68191
[14] Dell, H., Lapinskas, J.: Fine-grained reductions from approximate counting to decision. ACM Trans. Comput. Theory 13(2), 8:1-8:24 (2021) · Zbl 1495.68098
[15] Diestel, R., Graph Theory, 2017, Heidelberg: Springer, Heidelberg · Zbl 1375.05002 · doi:10.1007/978-3-662-53622-3
[16] Ducoffe, G.; Marinescu-Ghemeci, R.; Popa, A., On the (di)graphs with (directed) proper connection number two, Discrete Appl. Math., 281, 203-215, 2020 · Zbl 1440.05104 · doi:10.1016/j.dam.2019.06.024
[17] Edmonds, J., Paths, trees, and flowers, Can. J. Math., 17, 449-467, 1965 · Zbl 0132.20903 · doi:10.4153/CJM-1965-045-4
[18] Gerek, A.; Fujita, S.; Magnant, C., Proper connection with many colors, J. Comb., 3, 4, 683-693, 2012 · Zbl 1270.05040
[19] Goldberg, LA; Jerrum, M., Inapproximability of the Tutte polynomial, Inform. Comput., 206, 7, 908-929, 2008 · Zbl 1153.68039 · doi:10.1016/j.ic.2008.04.003
[20] Gu, R.; Li, X.; Qin, Z., Proper connection number of random graphs, Theoret. Comput. Sci., 609, 336-343, 2016 · Zbl 1331.05194 · doi:10.1016/j.tcs.2015.10.017
[21] Hale, WK, Frequency assignment: theory and applications, Proc. IEEE, 68, 12, 1497-1514, 1980 · doi:10.1109/PROC.1980.11899
[22] Huang, F.; Li, X.; Qin, Z.; Magnant, C., Minimum degree condition for proper connection number 2, Theoret. Comput. Sci., 774, 44-50, 2019 · Zbl 1428.05109 · doi:10.1016/j.tcs.2016.04.042
[23] Huang, Z., Li, X.: Hardness results for three kinds of colored connections of graphs, pp. 1-23 (2020). arxiv.org/abs/2001.01948
[24] Huang, Z.; Li, X., Hardness results for three kinds of colored connections of graphs, Theoret. Comput. Sci., 841, 27-38, 2020 · Zbl 1455.68140 · doi:10.1016/j.tcs.2020.06.030
[25] Impagliazzo, R.; Paturi, R., On the complexity of k-SAT, J. Comput. Syst. Sci., 62, 2, 367-375, 2001 · Zbl 0990.68079 · doi:10.1006/jcss.2000.1727
[26] Impagliazzo, R.; Paturi, R.; Zane, F., Which problems have strongly exponential complexity?, J. Comput. Syst. Sci., 63, 4, 512-530, 2001 · Zbl 1006.68052 · doi:10.1006/jcss.2001.1774
[27] Jerrum, M., Counting, sampling and integrating: algorithms and complexity, 2013, Basel, Switzerland: Lectures in Mathematics, ETH Zuerich, Birkhauser Verlag, Basel, Switzerland
[28] Jerrum, MR; Valiant, LG; Vazirani, VV, Random generation of combinatorial structures from a uniform distribution, Theoret. Comput. Sci., 43, 2-3, 169-188, 1986 · Zbl 0597.68056 · doi:10.1016/0304-3975(86)90174-X
[29] Li, X., Magnant, C.: Properly colored notions of connectivity - a dynamic survey. Theory Appl. Graphs 0(1), 1-16 (2015)
[30] Liśkiewicz, M.; Ogihara, M.; Toda, S., The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes, Theoret. Comput. Sci., 304, 1-3, 129-156, 2003 · Zbl 1051.68116 · doi:10.1016/S0304-3975(03)00080-X
[31] Lumduanhom, C.; Laforge, E.; Zhang, P., Characterizations of graphs having large proper connection numbers, Discuss. Math. Graph Theory, 36, 2, 439-453, 2016 · Zbl 1338.05088 · doi:10.7151/dmgt.1867
[32] Manoussakis, Y., Alternating paths in edge-colored complete graphs, Discret. Appl. Math., 56, 2-3, 297-309, 1995 · Zbl 0819.05039 · doi:10.1016/0166-218X(94)00091-Q
[33] Menger, K., Zur allgemeinen kurventheorie, Fundam. Math., 10, 1, 96-115, 1927 · JFM 53.0561.01 · doi:10.4064/fm-10-1-96-115
[34] Micali, S., Vazirani, V.V.: An \(\cal{O}\left(\sqrt{|{V}|} \cdot |{E}|\right)\) algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st Annual Symposium on Foundations of Computer Science (FOCS), pp. 17-27 (1980)
[35] Mulder, HM, Julius Petersen’s theory of regular graphs, Discrete Math., 100, 1-3, 157-175, 1992 · Zbl 0763.05084 · doi:10.1016/0012-365X(92)90639-W
[36] Petersen, J., Die theorie der regulären graphs, Acta Math., 15, 193-220, 1891 · JFM 23.0115.03 · doi:10.1007/BF02392606
[37] Roberts, L.G.: Multiple computer networks and intercomputer communication. In: Proceedings of the 1st ACM Symposium on Operating System Principles (SOSP), pp. 3.1-3.6 (1967)
[38] Szeider, S., Finding paths in graphs avoiding forbidden transitions, Discret. Appl. Math., 126, 2-3, 261-273, 2003 · Zbl 1010.68099 · doi:10.1016/S0166-218X(02)00251-2
[39] Tutte, WT, The factors of graphs, Can. J. Math., 4, 314-328, 1952 · Zbl 0049.24202 · doi:10.4153/CJM-1952-028-2
[40] Tutte, WT, The method of alternating paths, Combinatorica, 2, 3, 325-332, 1982 · Zbl 0513.05052 · doi:10.1007/BF02579240
[41] de Werra, D.; Gay, Y., Chromatic scheduling and frequency assignment, Discrete Appl. Math., 49, 1-3, 165-174, 1994 · Zbl 0801.90067 · doi:10.1016/0166-218X(94)90207-0
[42] Yeo, A.: A note on alternating cycles in edge-coloured graphs. J. Comb. Theory, Ser. B 69(2), 222-225 (1997) · Zbl 0870.05042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.