×

Joint image formation and two-dimensional autofocusing for synthetic aperture radar data. (English) Zbl 1416.94020

Summary: Imaging via synthetic aperture radar (SAR) is a well-established technique for effective scene reconstruction, with resolution up to a few centimeters. The measurement process requires the round trip time for the electromagnetic waves to travel to the scene and return back to the sensing mechanism. While hypothetically the round trip time can be exactly determined, in practice this distance can only be approximated, leading to errors in the round trip time estimates. These errors manifest as phase errors on the data and produce defocused imagery, making information extraction difficult. This investigation develops an autofocusing technique that exploits the correlation of the phase error on both the azimuth angle and spatial (cycles/meter) frequencies while also enforcing the piecewise smooth nature of the image. Our method estimates the phase error correction and the image through a joint optimization procedure. Specifically, our method incorporates a phase synchronization technique to estimate the unknown two-dimensional phase error. High order regularization is used in the optimization procedure, which helps to reduce speckle in the SAR image.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Natterer, F.; Cheney, M.; Borden, B., Resolution for radar and X-ray tomography, Inverse Probl., 19, 6, S55 (2003) · Zbl 1045.65114
[2] Cheney, M.; Borden, B., Fundamentals of Radar Imaging (2009), SIAM · Zbl 1192.78002
[3] Jakowatz, C. V.; Wahl, D. E.; Eichel, P. H.; Ghiglia, D. C.; Thompson, P. A., Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach (1996), Springer Science & Business Media
[4] Onhon, N.Ö.; Çetin, M., A sparsity-driven approach for joint SAR imaging and phase error correction, IEEE Trans. Image Process., 21, 4, 2075-2088 (2012) · Zbl 1373.94313
[5] Koo, V. C.; Lim, T. S.; Chuah, H. T., A comparison of autofocus algorithms for SAR imagery, (Progress in Electromagnetics Research Symposium, vol. 1 (2005)), 16-19
[6] Wahl, D.; Eichel, P.; Ghiglia, D.; Jakowatz, C., Phase gradient autofocus - a robust tool for high resolution SAR phase correction, IEEE Trans. Aerosp. Electron. Syst., 30, 3, 827-835 (1994)
[7] Çetin, M.; Onhon, Ö.; Samadi, S., Handling phase in sparse reconstruction for SAR: imaging, autofocusing, and moving targets, (9th European Conference on Synthetic Aperture Radar. 9th European Conference on Synthetic Aperture Radar, EUSAR 2012 (2012), VDE), 207-210
[8] Eichel, P.; Ghiglia, D.; Jakowatz, C., Speckle processing method for synthetic aperture radar phase correction, Opt. Lett., 14, 1, 1-3 (1989)
[9] Kelly, S. I., Auto-focus for under-sampled synthetic aperture radar, (Sensor Signal Processing for Defence (SSPD 2012) (2012))
[10] Ugur, S.; Arıkan, O., SAR image reconstruction and autofocus by compressed sensing, Digit. Signal Process., 22, 6, 923-932 (2012)
[11] Ye, W.; Yeo, T. S.; Bao, Z., Weighted least-squares estimation of phase errors for SAR/ISAR autofocus, IEEE Trans. Geosci. Remote Sens., 37, 5, 2487-2494 (1999)
[12] Güngör, A.; Çetin, M.; Güven, H. E., An augmented Lagrangian method for autofocused compressed SAR imaging, (2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing. 2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, CoSeRa (2015), IEEE), 1-5
[13] Sanders, T.; Scarnati, T., Combination of correlated phase error correction and sparsity models for SAR, (SPIE Commercial + Scientific Sensing and Imaging (2017), International Society for Optics and Photonics), 102220E
[14] Mao, X., Knowledge-aided two-dimensional autofocus for spotlight SAR polar format imagery, arXiv preprint
[15] Warner, D. W.; Ghiglia, D. C.; Fitzgerrell, A.; Beaver, J., Two-dimensional phase gradient autofocus, (Image Reconstruction from Incomplete Data, vol. 4123 (2000), International Society for Optics and Photonics), 162-174
[16] Schulz, T. J., Optimal sharpness function for SAR autofocus, IEEE Signal Process. Lett., 14, 1, 27-30 (2007)
[17] Ash, J. N., An autofocus method for backprojection imagery in synthetic aperture radar, IEEE Geosci. Remote Sens. Lett., 9, 1, 104-108 (2012)
[18] Fienup, J. R., Phase error correction by shear averaging, (Signal Recovery and Synthesis II, vol. 15 (1989)), 134-137
[19] Fienup, J. R., Detecting moving targets in SAR imagery by focusing, IEEE Trans. Aerosp. Electron. Syst., 37, 3, 794-809 (2001)
[20] Schwertner, M.; Booth, M.; Wilson, T., Wavefront sensing based on rotated lateral shearing interferometry, Opt. Commun., 281, 2, 210-216 (2008)
[21] Singer, A., Angular synchronization by eigenvectors and semidefinite programming, Appl. Comput. Harmon. Anal., 30, 1, 20-36 (2011) · Zbl 1206.90116
[22] Iwen, M. A.; Preskitt, B.; Saab, R.; Viswanathan, A., Phase retrieval from local measurements: improved robustness via eigenvector-based angular synchronization, preprint · Zbl 07140142
[23] Candes, E. J.; Strohmer, T.; Voroninski, V., Phaselift: exact and stable signal recovery from magnitude measurements via convex programming, Commun. Pure Appl. Math., 66, 8, 1241-1274 (2013) · Zbl 1335.94013
[24] Trefethen, L. N.; Bau, D., Numerical Linear Algebra, vol. 50 (1997), SIAM · Zbl 0874.65013
[25] Archibald, R.; Gelb, A.; Platte, R. B., Image reconstruction from undersampled Fourier data using the polynomial annihilation transform, J. Sci. Comput., 67, 2, 432-452 (2016) · Zbl 1339.65026
[26] Sanders, T.; Gelb, A.; Platte, R. B., Composite SAR imaging using sequential joint sparsity, J. Comput. Phys., 338, 357-370 (2017) · Zbl 1415.65050
[27] Fessler, J. A.; Sutton, B. P., Nonuniform fast Fourier transforms using min-max interpolation, IEEE Trans. Signal Process., 51, 2, 560-574 (2003) · Zbl 1369.94048
[28] Greengard, L.; Lee, J.-Y., Accelerating the nonuniform fast Fourier transform, SIAM Rev., 46, 3, 443-454 (2004) · Zbl 1064.65156
[29] Archibald, R.; Gelb, A.; Yoon, J., Polynomial fitting for edge detection in irregularly sampled signals and images, SIAM J. Numer. Anal., 43, 1, 259-279 (2005) · Zbl 1093.41009
[30] Ni, K.-Y.; Rao, S., SAR moving target imaging using sparse and low-rank decomposition, (SPIE Defense + Security, International Society for Optics and Photonics (2014)), 90771D
[31] Li, C., An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing (2009), Rice University, Ph.D. thesis
[32] Wright, S.; Nocedal, J., (Numerical Optimization, vol. 35 (1999), Springer Science), 67-68 · Zbl 0930.65067
[33] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
[34] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 1, 183-202 (2009) · Zbl 1175.94009
[35] Barzilai, J.; Borwein, J. M., Two-point step size gradient methods, IMA J. Numer. Anal., 8, 1, 141-148 (1988) · Zbl 0638.65055
[36] Casteel, C.; Gorham, L., Gotcha volumetric SAR data set overview (2007), (Online)
[37] Sandia National Laboratory, MSTAR overview (1995), (Online)
[38] Gorham, L. A.; Moore, L. J., SAR image formation toolbox for MATLAB, (SPIE Defense, Security, and Sensing, International Society for Optics and Photonics (2010)), 769906
[39] Gorham, L. A.; Rigling, B. D., Scene size limits for polar format algorithm, IEEE Trans. Aerosp. Electron. Syst., 52, 1, 73-84 (2016)
[40] Nguyen, N.; Liu, Q. H., The regular Fourier matrices and nonuniform fast Fourier transforms, SIAM J. Sci. Comput., 21, 1, 283-293 (1999) · Zbl 0941.65152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.