×

High spatial accuracy analysis of linear triangular finite element for distributed order diffusion equations. (English) Zbl 1452.65340

Summary: In this paper, an effective numerical fully discrete finite element scheme for the distributed order time fractional diffusion equations is developed. By use of the composite trapezoid formula and the well-known \(L1\) formula approximation to the distributed order derivative and linear triangular finite element approach for the spatial discretization, we construct a fully discrete finite element scheme. Based on the superclose estimate between the interpolation operator and the Ritz projection operator and the interpolation post-processing technique, the superclose approximation of the finite element numerical solution and the global superconvergence are proved rigorously, respectively. Finally, a numerical example is presented to support the theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion, Fract. Calc. Appl. Anal. 4 (2001), no. 4, 421-442. · Zbl 1042.34028
[2] —-, Diffusion with space memory modelled with distributed order space fractional differential equations, Ann. Geophys. 46 (2003), no. 2, 223-234.
[3] H. Chen, S. Lü and W. Chen, Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain, J. Comput. Phys. 315 (2016), 84-97. · Zbl 1349.65507
[4] G.-h. Gao, H.-w. Sun and Z.-z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys. 298 (2015), 337-359. · Zbl 1349.65296 · doi:10.1016/j.jcp.2015.05.047
[5] B. Jin, R. Lazarov, D. Sheen and Z. Zhou, Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data, Fract. Calc. Appl. Anal. 19 (2016), no. 1, 69-93. · Zbl 1333.65111 · doi:10.1515/fca-2016-0005
[6] Z. Li, Y. Kian and E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations, arXiv:1709.06823. · Zbl 1428.35667 · doi:10.3233/ASY-191532
[7] Z. Li, Y. Luchko and M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal. 17 (2014), no. 4, 1114-1136. · Zbl 1312.35184 · doi:10.2478/s13540-014-0217-x
[8] H.-l. Liao, Y.-n. Zhang, Y. Zhao and H.-s. Shi, Stability and convergence of modified Du Fort-Frankel schemes for solving time-fractional subdiffusion equations, J. Sci. Comput. 61 (2014), no. 3, 629-648. · Zbl 1339.65150 · doi:10.1007/s10915-014-9841-1
[9] Q. Lin and N. Yan, The Construction and Analysis of High Efficient Elements, Hebei University Press, China, 1996.
[10] I. Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering 198, Academic Press, San Diego, CA, 1999. · Zbl 0924.34008
[11] J. Ren, X. Long, S. Mao and J. Zhang, Superconvergence of finite element approximations for the fractional diffusion-wave equation, J. Sci. Comput. 72 (2017), no. 3, 917-935. · Zbl 1397.65162 · doi:10.1007/s10915-017-0385-z
[12] J. Ren, S. Mao and J. Zhang, Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation, Numer. Methods Partial Differential Equations 34 (2018), no. 2, 705-730. · Zbl 1390.65118 · doi:10.1002/num.22226
[13] J. Ren and Z.-z. Sun, Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations, East Asian J. Appl. Math. 4 (2014), no. 3, 242-266. · Zbl 1320.65120 · doi:10.4208/eajam.181113.280514a
[14] J. Ren, Z.-z. Sun and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys. 232 (2013), 456-467. · Zbl 1291.35428 · doi:10.1016/j.jcp.2012.08.026
[15] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and applications, Gordon and Breach, London, 1993. · Zbl 0818.26003
[16] D. Shi, P. Wang and Y. Zhao, Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation, Appl. Math. Lett. 38 (2014), 129-134. · Zbl 1314.65127
[17] D. Shi and H. Yang, Superconvergence analysis of finite element method for time-fractional Thermistor problem, Appl. Math. Comput. 323 (2018), 31-42. · Zbl 1427.65259 · doi:10.1016/j.amc.2017.11.027
[18] —-, A new approach of superconvergence analysis for two-dimensional time fractional diffusion equation, Comput. Math. Appl. 75 (2018), no. 8, 3012-3023. · Zbl 1415.65231 · doi:10.1016/j.camwa.2018.01.029
[19] —-, Superconvergence analysis of a new low order nonconforming MFEM for time-fractional diffusion equation, Appl. Numer. Math. 137 (2018), 109-122. · Zbl 1395.65089 · doi:10.1016/j.apnum.2018.05.002
[20] Z.-z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), no. 2, 193-209. · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[21] W. Tian, H. Zhou and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp. 84 (2015), no. 294, 1703-1727. · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
[22] C. Yao, The solvability of coupling the thermal effect and magnetohydrodynamics field with turbulent convection zone and the flow field, J. Math. Anal. Appl. 476 (2019), no. 2, 495-521. · Zbl 1448.76199 · doi:10.1016/j.jmaa.2019.03.061
[23] H. Ye, F. Liu, V. Anh and I. Turner, Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math. 80 (2015), no. 3, 825-838. · Zbl 1337.65120 · doi:10.1093/imamat/hxu015
[24] X. Zhao and Z.-z. Sun, · Zbl 1227.65075 · doi:10.1016/j.jcp.2011.04.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.