×

A third-order shear deformation theory for bending behaviors of rotating FGM beams resting on elastic foundation with geometrical imperfections in thermal environments. (English) Zbl 1512.74059

Summary: Beam-shaped components in large mechanical structures such as propellers, gas turbine blades, engine turbines, rotating railway bridges, and so on, when operating, usually engage in rotational movement around the fixed axis. Studying the mechanical behavior of these structures has great significance in engineering practice. Therefore, this paper is the first investigation on the static bending of rotating functionally graded material (FGM) beams with initial geometrical imperfections in thermal environments, where the higher-order shear deformation theory and the finite element method (FEM) are exercised. The material properties of beams are assumed to be varied only in the thickness direction and changed by the temperature effect, which increases the correctness and proximity to technical reality. The numerical results of this work are compared with those of other published papers to evaluate the accuracy of the proposed theory and mechanical model used in this paper. A series of parameter studies is carried out such as geometrical and material properties, especially the rotational speed and temperature, to evaluate their influences on the bending responses of structures.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Nguyen, H.-N.; Tan, T. C.; Luat, D. T.; Phan, V.-D.; Thom, D. V.; Minh, P. V., Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory, Materials, 12, 8, 1262 (2019) · doi:10.3390/ma12081262
[2] Do, V. T.; Doan, D. H.; Duc, N. D.; Bui, T. Q., Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface, Composite Structures, 182, 542-548 (2017) · doi:10.1016/j.compstruct.2017.09.059
[3] Giunta, G.; Belouettar, S.; Carrera, E., Analysis of FGM beams by means of classical and advanced theories, Mechanics of Advanced Materials and Structures, 17, 8, 622-635 (2010) · doi:10.1080/15376494.2010.518930
[4] Murín, J.; Aminbaghai, M.; Kutiš, V., Exact solution of the bending vibration problem of FGM beams with variation of material properties, Engineering Structures, 32, 6, 1631-1640 (2010) · doi:10.1016/j.engstruct.2010.02.010
[5] Do, T. V.; Nguyen, D. K.; Duc, N. D.; Doan, D. H.; Bui, T. Q., Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory, Thin-Walled Structures, 119, 687-699 (2017) · doi:10.1016/j.tws.2017.07.022
[6] Shi-Rong, L.; Da-Fu, C.; Ze-Qing, W., Bending solutions of FGM Timoshenko beams from those of the homogenous Euler-Bernoulli beams, Applied Mathematical Modelling, 37, 10-11, 7077-7085 (2013) · Zbl 1438.74101 · doi:10.1016/j.apm.2013.02.047
[7] Shen, H.-S.; Wang, Z.-X., Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments, International Journal of Mechanical Sciences, 81, 195-206 (2014) · doi:10.1016/j.ijmecsci.2014.02.020
[8] Aldousari, S. M., Bending analysis of different material distributions of functionally graded beam, Applied Physics A, 123, 1-9, 296 (2017) · doi:10.1007/s00339-017-0854-0
[9] Shan, W.; Li, B.; Qin, S.; Mo, H., Nonlinear bending and vibration analyses of FG nanobeams considering thermal effects, Materials Research Express, 7, 12 (2020) · doi:10.1088/2053-1591/abce85
[10] Katili, A. M.; Katili, I., A simplified UI element using third-order Hermitian displacement field for static and free vibration analysis of FGM beam, Composite Structures, 250 (2020) · doi:10.1016/j.compstruct.2020.112565
[11] Çelik, M.; Artan, R., An investigation of static bending of a bi-directional strain-gradient Euler-Bernoulli nano-beams with the method of initial values, Microsystem Technologies, 26, 9, 2921-2929 (2020) · doi:10.1007/s00542-020-04926-2
[12] Magnucki, K.; Lewinski, J.; Magnucka-Blandzi, E., An improved shear deformation theory for bending beams with symmetrically varying mechanical properties in the depth direction, Acta Mechanica, 231, 10, 4381-4395 (2020) · Zbl 1451.74138 · doi:10.1007/s00707-020-02763-y
[13] Sahmani, S.; Safaei, B., Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams, Applied Mathematical Modelling, 82, 336-358 (2020) · Zbl 1481.74640 · doi:10.1016/j.apm.2020.01.051
[14] Demirbas, M. D.; Caliskan, U.; Xu, X.; Filippi, M., Evaluation of the bending response of compact and thin-walled FG beams with CUF, Mechanics of Advanced Materials and Structures, 145 (2020) · doi:10.1080/15376494.2019.1704951
[15] Garg, A.; Chalak, H. D.; Chakrabarti, A., Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory, Mechanics of Materials, 151 (2020) · doi:10.1016/j.mechmat.2020.103634
[16] Hadji, L., Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model, Smart Structures and Systems, 26, 2, 253-262 (2020) · doi:10.12989/sss.2020.26.2.253
[17] Pei, Y. L.; Li, L. X., A simplified theory of FG curved beams, European Journal of Mechanics-A/Solids, 85 (2021) · Zbl 1476.74090 · doi:10.1016/j.euromechsol.2020.104126
[18] Bagheri, H.; Kiani, Y.; Eslami, M. R., Asymmetric thermo-inertial buckling of annular plates, Acta Mechanica, 228, 4, 1493-1509 (2017) · Zbl 1365.74100 · doi:10.1007/s00707-016-1772-5
[19] Pradhan, S. C.; Murmu, T., Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever, Physica E: Low-Dimensional Systems and Nanostructures, 42, 7, 1944-1949 (2010) · doi:10.1016/j.physe.2010.03.004
[20] Li, L.; Zhang, D. G.; Zhu, W. D., Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect, Journal of Sound and Vibration, 333, 5, 1526-1541 (2014) · doi:10.1016/j.jsv.2013.11.001
[21] Das, D., Free vibration and buckling analyses of geometrically non-linear and shear-deformable FGM beam fixed to the inside of a rotating rim, Composite Structures, 179, 628-645 (2017) · doi:10.1016/j.compstruct.2017.07.051
[22] Dejin, C.; Kai, F.; Shijie, Z., Flapwise vibration analysis of rotating composite laminated Timoshenko microbeams with geometric imperfection based on a re-modified couple stress theory and isogeometric analysis, European Journal of Mechanics - A/Solids, 76, 25-35 (2019) · Zbl 1470.74033 · doi:10.1016/j.euromechsol.2019.03.002
[23] Khosravi, S.; Arvin, H.; Kiani, Y., Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment, International Journal of Mechanical Sciences, 164 (2019) · doi:10.1016/j.ijmecsci.2019.105187
[24] Khosravi, S.; Arvin, H.; Kiani, Y., Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams, Composites Part B: Engineering, 175 (2019) · doi:10.1016/j.compositesb.2019.107178
[25] Kiani, Y.; Bagheri, H.; Eslami, M. R., Asymmetric compressive stability of rotating annular plates, European Journal of Computational Mechanics, 28, 4, 325-350 (2019) · doi:10.13052/ejcm1958-5829.2843
[26] Arvin, H.; Hosseini, S. M. H.; Kiani, Y., Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise, Thin-Walled Structures, 158 (2021) · doi:10.1016/j.tws.2020.107187
[27] Hosseini, S. M. H.; Arvin, H.; Kiani, Y., On buckling and post-buckling of rotating clamped-clamped functionally graded beams in thermal environment, Mechanics Based Design of Structures and Machines, 66, 1-16 (2020) · doi:10.1080/15397734.2020.1784205
[28] Duc, N. D., Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells (2014), Hanoi, Vietnam: Vietnam National University Press, Hanoi, Vietnam
[29] Duc, N. D.; Quan, T. Q.; Khoa, N. D., New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature, Journal Aerospace Science and Technology, 71, 360-372 (2017) · doi:10.1016/j.ast.2017.09.031
[30] Duc, N. D.; Quan, T. Q., Nonlinear dynamic analysis of imperfect functionally graded material double curved thin shallow shells with temperature-dependent properties on elastic foundation, Journal of Vibration and Control, 21, 7, 1340-1362 (2015) · doi:10.1177/1077546313494114
[31] Duc, N. D., Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation, Composite Structures, 99, 88-96 (2013) · doi:10.1016/j.compstruct.2012.11.017
[32] Duc, N. D.; Quan, T. Q., Nonlinear postbuckling of imperfect eccentrically stiffened P-FGM double curved thin shallow shells on elastic foundations in thermal environments, Composite Structures, 106, 590-600 (2013) · doi:10.1016/j.compstruct.2013.07.010
[33] Duc, N. D.; Quan, T. Q.; Luat, V. D., Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermo-electro-mechanical loads, Composite Structures, 125, 29-40 (2015) · doi:10.1016/j.compstruct.2015.01.041
[34] Simsek, M., Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method, International Journal of Engineering and Applied Sciences (IJEAS), 1, 3, 1-11 (2009)
[35] Tinh, Q. B.; Thom, V. D.; Lan, H. T. T., On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory, Composite Part B, 92, 218-241 (2016) · doi:10.1016/j.compositesb.2016.02.048
[36] Hoai, N. V.; Doan, D. H.; Khoa, N. M.; Do, T. V.; Tran, H. T., Phase-field buckling analysis of cracked stiffened functionally graded plates, Composite Structures, 217, 50-59 (2019) · doi:10.1016/j.compstruct.2019.03.014
[37] Yu, T.; Bui, T. Q.; Yin, S., On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis, Composite Structures, 136, 684-695 (2016) · doi:10.1016/j.compstruct.2015.11.002
[38] Dat, P. T.; Thom, D. V.; Luat, D. T., Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory, Vietnam Journal of Mechanics, 38, 2, 103-122 (2016) · doi:10.15625/0866-7136/38/2/6730
[39] Duc, N. D.; Trinh, T. D.; Van Do, T.; Doan, D. H., On the buckling behavior of multi-cracked FGM plates, Proceedings of the International Conference on Advances in Computational Mechanics 2017, 28, 29-45 (2018) · doi:10.1007/978-981-10-7149-2_3
[40] Timoshenko, S. P.; Gere, J. M., Theory of Elastic Stability (1989), New York, NY, USA: Dover Publications, New York, NY, USA
[41] Chen, W. Q.; Lü, C. F.; Bian, Z. G., A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation, Applied Mathematical Modelling, 28, 10, 877-890 (2004) · Zbl 1147.74330 · doi:10.1016/j.apm.2004.04.001
[42] Wang, C. M.; Lam, K. Y.; He, X. Q., Exact solutions for Timoshenko beams on elastic foundations using green’s Functions \(\ast \), Mechanics of Structures and Machines, 26, 1, 101-113 (1998) · doi:10.1080/08905459808945422
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.