×

Analytical and meshless DQM approaches to free vibration analysis of symmetric FGM porous nanobeams with piezoelectric effect. (English) Zbl 1521.74417


MSC:

74S99 Numerical and other methods in solid mechanics
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74F15 Electromagnetic effects in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Gautschi, G., Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers (2002), Springer-Verlag
[2] Giraud, F.; Giraud-Audine, C., Piezoelectric actuators: vector control method: basic (2019), Modeling and Mechatronic Design of Ultrasonic Devices: Modeling and Mechatronic Design of Ultrasonic Devices Butterworth-Heinemann
[3] Vijaya, M. S., Piezoelectric materials and devices: applications in engineering and medical sciences (2012), CRC Press
[4] Duraffourg, L.; Arcamone, J., Nanoelectromechanical systems (2015), John Wiley & Sons, Inc.
[5] Awrejcewicz, J.; Krysko, A. V.; Zhigalov, M. V.; Krysko, V. A., Mathematical modeling and numerical analysis of size-dependent structural members in temperature fields (2021), Springer · Zbl 1468.74002
[6] Schmid, S.; Villanueva, L. G.; Roukes, M. L., Fundamentals of nanomechanical resonators (2021), Springer
[7] Malvar, O.; Ruz, J.; Kosaka, P. M.; Domínguez, C. M.; Gil-Santos, E.; Calleja, M., Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators, Nat Commun, 7, 1-8 (2016)
[8] Lyshevski, S. E., MEMS and NEMS. Systems, devices, and structures (2002), CRC Press
[9] Sharpe, W. N., Springer handbook of experimental solid mechanics (2008), Springer-Verlag, (Ed.)
[10] Farajpour, A.; Ghayesh, M. H.; Farokhi, H., A review on the mechanics of nanostructures, Int J Eng Sci, 133, 231-263 (2018) · Zbl 1423.74693
[11] Ghayesh, M. H.; Farajpour, A., A review on the mechanics of functionally graded nanoscale and microscale structures, Int J Eng Sci, 137, 8-36 (2019) · Zbl 1425.74358
[12] Tiwari, A.; Baldev, R., Materials and failures in MEMS and NEMS (2015), Scrivener Publishing, (Ed.)
[13] Bhushan, B., Springer handbook of nanotechnology (2004), Springer-Verlag, (Ed.)
[14] Chou, K. S.; Lee, T. K.; Liu, F. J., Sensing mechanism of a porous ceramic as humidity sensor, Sens Actuators B, 56, 106-111 (1999)
[15] Oh, C.; Stovall, C. B.; Dhaouadi, W.; Carpick, R. W.; de Boer, M. P., The strong effect on MEMS switch reliability of film deposition conditions and electrode geometry, Microelectron Reliab, 98, 131-143 (2019)
[16] Polesko, J. A.; Bernstein, D. H., Modeling MEMS and NEMS (2003), CRC PRESS · Zbl 1031.74003
[17] Toupin, R. A., Elastic materials with couple-stresses, Arch Ration Mech Anal, 11, 385-414 (1962) · Zbl 0112.16805
[18] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int J Solids Struct, 39, 10, 2731-2743 (2002) · Zbl 1037.74006
[19] Mindlin, R. D., Micro-structure in linear elasticity, Arch Ration Mech Anal, 16, 51-78 (1964) · Zbl 0119.40302
[20] Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity, Int J Solids Struct, 1, 4, 417-438 (1965)
[21] Eringen, A. C., Nonlocal polar elastic continua, Int J Eng Sci, 10, 1, 1-16 (1972) · Zbl 0229.73006
[22] Eringen, A. C.; Edelen, D. G.B., On nonlocal elasticity, Int J Eng Sci, 10, 3, 233-248 (1972) · Zbl 0247.73005
[23] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface wave, J Appl Phys, 54, 4703-4710 (1983)
[24] Lim, C. W.; Zhang, G.; Reddy, J. N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J Mech Phys Solids, 78, 298-313 (2015) · Zbl 1349.74016
[25] Romano, G.; Barretta, R., Nonlocal elasticity in nanobeams: the stress-driven integral model, Int J Eng Sci, 115, 14-27 (2017) · Zbl 1423.74512
[26] Roque, C. M.C.; Ferreira, A. J.M.; Reddy, J. N., Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, Int J Eng Sci, 49, 976-984 (2011) · Zbl 1231.74272
[27] Roque, C. M.C.; Fidalgo, D. S.; Ferreira, A. J.M.; Reddy, J. N., A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Compos Struct, 96, 532-537 (2013)
[28] Kiani, K., Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories, Int J Mech Sci, 68, 16-34 (2013)
[29] Ansari, R.; Arjangpay, A., Nanoscale vibration and buckling of single-walled carbon nanotubes using the meshless local Petrov-Galerkin method, Phys E, 63, 283-292 (2014)
[30] Strozzi, M.; Manevitch, L. I.; Pellicano, F.; Smirnov, V. V.; Shepelev, D. S., Low-frequency linear vibrations of single-walled carbon nanotubes: analytical and numerical models, J Sound Vib, 333, 2936-2957 (2014)
[31] Behera, L.; Chakraverty, S., Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories, Comput Math Appl, 69, 1444-1462 (2015) · Zbl 1443.65301
[32] Wang, X.; Wang, J.; Guo, X., Finite deformation of single-walled carbon nanocones under axial compression using a temperature-related multiscale quasi-continuum model, Comput Mater Sci, 114, 244-253 (2016)
[33] Kiani, K., Nonlocal-integro-differential modeling of vibration of elastically supported nanorods, Phys E, 83, 151-163 (2016)
[34] Kiani, K., Surface and shear energy effects on vibrations of magnetically affected beam-like nanostructures carrying direct currents, Int J Mech Sci, 113, 221-238 (2016)
[35] Kiani, K., In‑plane vibration and instability of nanorotors made from functionally graded materials accounting for surface energy effect, Microsyst Technol, 23, 4853-4869 (2017)
[36] Jalaei, H. H.; Ghorbanpour Arani, A.; Tourang, H., On the dynamic stability of viscoelastic graphene sheets, Int J Eng Sci, 132, 16-29 (2018) · Zbl 1423.74420
[37] Chen, D.; Feng, K.; Zheng, S., Flapwise vibration analysis of rotating composite laminated Timoshenko microbeams with geometric imperfection based on a re-modified couple stress theory and isogeometric analysis, Eur J Mech A Solids, 76, 25-35 (2019) · Zbl 1470.74033
[38] Yu, T.; Zhang, J.; Hu, H.; Bui, T. Q., A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis, Compos Struct, 211, 76-88 (2019)
[39] Phung-Van, P.; Thai, C. H.; Nguyen-Xuan, H.; Wahab, M. A., Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis, Compos Part B Eng, 164, 215-225 (2019)
[40] Rezaiee‑Pajand, M.; Mokhtari, M., A novel meshless particle method for nonlocal analysis of two‑directional functionally graded nanobeams, J Braz Soc Mech Sciences and Eng, 41, 303 (2019)
[41] Rahmani, A.; Faroughi, S.; Friswell, M. I., The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory, Mech Syst Sig Process, 144, Article 106854 pp. (2020)
[42] Ouakad, H. M.; Valipour, A.; Żur, K. K.; Sedighi, H. M.; Reddy, J. N., On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity, Mech Mater, 148, Article 103532 pp. (2020)
[43] Thai, C. H.; Ferreira, A. J.M.; Phung-Van, P., Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory, Eng Anal Bound Elem, 117, 284-298 (2020) · Zbl 1464.74074
[44] Ahmadi, I., Vibration analysis of 2D-functionally graded nanobeams using the nonlocal theory and meshless method, Eng Anal Bound Elem, 124, 142-154 (2021) · Zbl 1464.74381
[45] Kiani, K.; Żur, K. K., Vibrations of double-nanorod-systems with defects using nonlocal-integral surface energy-based formulations, Compos Struct, 256, Article 113028 pp. (2021)
[46] Mehralian, F.; Tadi Beni, Y.; Ansari, R., Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell, Compos Struct, 152, 45-61 (2016)
[47] Razavi, H.; Babadi, A. F.; Tadi Beni, Y., Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory, Compos Struct, 160, 1299-1309 (2017)
[48] Arefi, M.; Zenkour, A. M., Size-dependent free vibration and dynamic analyzes of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation, Phys B, 521, 188-197 (2017)
[49] Malikan, M.; Nguyen, V. B., Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory, Phys E, 102, 8-28 (2018)
[50] Sun, J.; Wang, Z.; Zhou, Z.; Xu, X.; Lim, C. W., Surface effects on the buckling behaviors of piezoelectric cylindrical nanoshells using nonlocal continuum model, Appl Math Model, 59, 341-356 (2018) · Zbl 1480.74092
[51] Arefi, M.; Bidgoli, E. M.R.; Zenkour, A. M., Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface, Mech Adv Mater Struct, 26, 741-752 (2019)
[52] Zenkour, A. M.; Aljadani, M. H., Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates, Eur J Mech A Solids, 78, Article 103835 pp. (2019) · Zbl 1473.74047
[53] Arefi, M.; Rabczuk, T., A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell, Compos Part B Eng, 168, 496-510 (2019)
[54] Arefi, M.; Kiani, M.; Rabczuk, T., Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets, Compos Part B Eng, 168, 320-333 (2019)
[55] Arefi, M.; Kiani, M.; Zenkour, A. M., Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak’s foundation via MCST, J Sandw Struct Mater, 22, 55-86 (2020)
[56] Żur, K. K.; Arefi, M.; Kim, J.; Reddy, J. N., Free vibration and buckling analyzes of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory, Compos Part B Eng, 182, Article 107601 pp. (2020)
[57] Arefi, M., Electro-mechanical vibration characteristics of piezoelectric nano shells, Thin Walled Struct, 155, Article 106912 pp. (2020)
[58] Ke, L. L.; Wang, Y. S., Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Phys E, 63, 52-61 (2014)
[59] Ghorbanpour-Arani, A. H.; Rastgoo, A.; Sharafi, M. M.; Kolahchi, R.; Ghorbanpour Arani, A., Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems, Meccanica, 51, 25-40 (2016) · Zbl 1332.74030
[60] Tadi Beni, Y., Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams, J Intell Mater Syst Struct, 27, 1-17 (2016)
[61] Tadi Beni, Y., Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling, Mech Res Commun, 75, 67-80 (2016)
[62] Tadi Beni, Y., A nonlinear electro-mechanical analysis of nanobeams based on the size-dependent piezoelectricity theory, J Mech, 33, 289-301 (2017)
[63] Ebrahimi, F.; Barati, M. R., Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams, Mech Syst Sig Process, 93, 445-459 (2017)
[64] Mohtashami, M.; Tadi Beni, Y., Size‑dependent buckling and vibrations of piezoelectric nanobeam with finite element method, Iran J Sci Technol Trans Civ Eng, 43, 563, 576 (2019)
[65] Ragb, O.; Mohamed, M.; Matbuly, M. S., Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods, Heliyon, 5, e01856 (2019)
[66] Naderi, A.; Fakher, M.; Hosseini-Hashemi, S., On the local/nonlocal piezoelectric nanobeams: vibration, buckling, and energy harvesting, Mech Syst Sig Process, 151, Article 107432 pp. (2021)
[67] Jankowski, P.; Żur, K. K.; Kim, J.; Lim, C. W.; Reddy, J. N., On the piezoelectric effect on stability of symmetric FGM porous nanobeams, Compos Struct, 267, Article 113880 pp. (2021)
[68] Reddy, J. N., Energy principles and variational methods in applied mechanics (2017), John Wiley & Sons
[69] Tiersten, H. F., Electroelastic interactions and the piezoelectric equations, J Acoust Soc Am, 70, 1567-1576 (1981) · Zbl 0467.73140
[70] Farajpuor, A.; Ghayesh, M. H.; Farokhi, H., A review on the mechanics of nanostructures, Int J Eng Sci, 133, 231-263 (2018) · Zbl 1423.74693
[71] Ghayesh, M. H.; Farajpuor, A., A review on the mechanics of functionally graded nanoscale and microscale structures, Int J Eng Sci, 137, 8-36 (2019) · Zbl 1425.74358
[72] Lu, L.; Guo, X.; Zhao, J., A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms, Int J Eng Sci, 119, 265-277 (2017)
[73] Mitchell, J. A.; Reddy, J. N., A refined hybrid plate theory for composite laminates with piezoelectric laminae, Int J Solids Struct, 32, 2345-2367 (1995) · Zbl 0869.73038
[74] Wang, Q.; Quek, S. T.; Sun, C. T.; Liu, X., Analysis of piezoelectric coupled circular plate, Smart Mater Struct, 10, 229-239 (2001)
[75] Wang, Q., On buckling of column structures with a pair of piezoelectric layers, Eng Struct, 24, 199-205 (2002)
[76] Reddy, J. N., Energy principles and variational methods in applied mechanics (2017), John Wiley & Sons
[77] Kerr, A. D., A study of a new foundation model, Acta Mech, 1, 135-147 (1965)
[78] Apuzzo, A.; Baretta, R.; Faghidian, S. A.; Luciano, R.; Marotti de Sciarra, F., Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams, Compos Part B Eng, 164, 667-674 (2019)
[79] Lu, L.; Guo, X.; Zhao, J., Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, Int J Eng Sci, 116, 12-24 (2017) · Zbl 1423.74499
[80] Nguyen, T. K.; Vo, T. P.; Nguyen, B. D.; Lee, J., An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory, Compos Struct, 156, 238-252 (2016)
[81] Nguyen, T. K.; Nguyen, T. T.P.; Vo, T. P.; Thai, H. T., Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory, Compos Part B Eng, 76, 273-285 (2015)
[82] Vo, T. P.; Thai, H. T.; Nguyen, T. K.; Maheri, A.; Lee, J., Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Eng Struct, 64, 12-22 (2014)
[83] Vo, T. P.; Thai, H. T.; Nguyen, T. K.; Inam, F.; Lee, J., A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Compos Struct, 119, 1-12 (2015)
[84] Ballas, R. G., Piezoelectric multilayer beam bending actuators. static and dynamic behavior and aspects of sensor integration (2007), Springer-Verlag
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.