×

Multiscale analysis and mechanical characterization of open-cell foams by simplified FE modeling. (English) Zbl 1494.74063

Summary: Foam materials are experiencing a great diffusion in the industrial field because of their numerous properties and adaptability to different purposes. At the same time, research efforts are addressed to define new fields of application and methodologies of foam simulation, capable of combining their behavior at macroscale to phenomena at microscale, i.e. ligaments level. In this paper, a FE beam modeling strategy for open-cell foams acting on different scales of analysis is described. At first, on the microscale, the definition of the fundamental Kelvin unit cell is outlined with a particular characterization of the intersection zone between ligaments, that is a critical issue to obtain an accurate simulation instrument. The repetition of the unit cell within the material domain allows to obtain the overall foam material and operate at the macroscale. The elastic properties at macroscale are derived by means of FE analysis and compared with both solid model and experimental results. The proposed simplified FE modeling, using equivalent beam elements having suitable mechanical characteristics, demonstrates high accuracy levels and substantially relieve the computational efforts required by the commonly employed solid models.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Aakash, B.; Sirui, B.; Shields, M. D.; Stavros, G., On the high-temperature crushing of metal foams, Int. J. Solid Struct., 174-175, 18-27 (2019)
[2] Ashby, M.; Evans, A.; Fleck, N.; Gibson, L.; Hutchinson, J.; Wadley, H., MetalFoams: A Design Guide (2000), Butterworth-Heinemann
[3] Barnes, A. T.; Ravi-Chandar, K.; Kyriakides, S.; Gaitanaros, S., Dynamic crushing of aluminum foams: Part I - Experiments, Int. J. Solid Struct., 51, 1631-1645 (2014)
[4] Belardi, V. G.; Fanelli, P.; Vivio, F., Structural analysis and optimization of anisogrid composite lattice cylindrical shells, Compos. B Eng., 139, 203-215 (2018)
[5] Belardi, V. G.; Fanelli, P.; Vivio, F., Design, analysisandoptimizationofanisogridcompositelatticeconicalshells, Composites Part B: Engineering, 150, 184-195 (2018)
[6] Belardi, V. G.; Fanelli, P.; Vivio, F., Theoretical definition of a new custom finite element for structural modeling of composite bolted joints, Compos. Struct., 258, 113199 (2021)
[7] Cheng, Y.; Liu, M.; Zhang, P.; Xiao, W.; Zhang, C.; Liu, J.; Hou, H., The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading - experimental investigations, Int. J. Mech. Sci., 145, 378-388 (2018)
[8] Dabo, M.; Roland, T.; Dalongeville, G.; Gauthier, C.; KÃľkicheff, P., Ad-hoc modeling of closed-cell foam microstructures for structure-properties relationships, Eur. J. Mech. Solid., 75, 128-141 (2019) · Zbl 1472.74061
[9] Degischer, H.; Brigitte, K., Handbook of Cellular Metals Production , Processing , Applications (2002), Wiley-VCH Verlag GmbH & Co.
[10] Duan, S.; Xi, L.; Wen, W.; Fang, D., Mechanical performance of topology-optimized 3D lattice materials manufactured via selective laser sintering, Compos. Struct., 238, 111985 (2020)
[11] Elsayed, M. S.; Pasini, D., Multiscale structural design of columns made of regular octet-truss lattice material, Int. J. Solid Struct., 47, 1764-1774 (2010) · Zbl 1194.74172
[12] Fanelli, P.; Evangelisti, A.; Salvini, P.; Vivio, F., Modelling and characterization of structural behaviour of Al open-cell foams, Mater. Des., 114, 167-175 (2017)
[13] Gaitanaros, S.; Kyriakides, S., Dynamic crushing of aluminum foams: Part II - Analysis, Int. J. Solid Struct., 51, 1646-1661 (2014)
[14] Gong, L.; Kyriakides, S.; Jang, W.-Y., Compressive response of open-cell foams. Part I: morphology and elastic properties, Int. J. Solid Struct., 42, 1355-1379 (2005) · Zbl 1120.74422
[15] Guo, H.; Takezawa, A.; Honda, M.; Kawamura, C.; Kitamura, M., Finite element simulation of the compressive response of additively manufactured lattice structures with large diameters, Comput. Mater. Sci., 175, 109610 (2020)
[16] Jang, W.-Y.; Kraynik, A. M.; Kyriakides, S., On the microstructure of open-cell foams and its effect on elastic properties, Int. J. Solid Struct., 45, 1845-1875 (2008) · Zbl 1419.74198
[17] Jin, N.; Wang, F.; Wang, Y.; Zhang, B.; Cheng, H.; Zhang, H., Effect of structural parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading, Int. J. Impact Eng., 132, 103313 (2019)
[18] Jung, A.; Diebels, S., Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams, Mater. Des., 131, 252-264 (2017)
[19] Kulshreshtha, A.; Dhakad, S., Preparation of metal foam by different methods: a review, Mater. Today: Proceedings (2020)
[20] Li, M.; Lai, C.; Zheng, Q.; Han, B.; Wu, H.; Fan, H., Design and mechanical properties of hierarchical isogrid structures validated by 3D printing technique, Mater. Des., 168, 107664 (2019)
[21] De Luca, R.; Maviglia, F.; Federici, G.; Calabró, G.; Fanelli, P.; Vivio, F., Preliminary investigation on W foams as protection strategy for advanced FW PFCs, Fusion Eng. Des., 146, 1690-1693 (2019)
[22] De Luca, R.; Fanelli, P.; Hunteler, C.; Vivio, F.; Calabró, M. F.Y. J.G., Comparison between finite element and experimental evidences of innovative W lattice materials for sacrificial limiter applications, Fusion Eng. Des., Article 112493 pp. (2021)
[23] De Luca, R.; Fanelli, P.; Mingozzi, S.; Calabró, G.; Vivio, F.; Maviglia, F.; You, J., Parametric design study of a substrate material for a DEMO sacrificial limiter, Fusion Eng. Des., 158, 111721 (2020)
[24] Luo, G.; Xue, P.; Sun, S., Investigations on the yield behavior of metal foam under multiaxial loadings by an imaged-based mesoscopic model, Int. J. Mech. Sci., 142-143, 153-162 (2018)
[25] Mao, R.; Lu, G.; Wang, Z.; Zhao, L., Large deflection behavior of circular sandwich plates with metal foam-core, Eur. J. Mech. Solid., 55, 57-66 (2016) · Zbl 1406.74445
[26] Mao, H.; Rumpler, R.; Göransson, P., An inverse method for characterisation of the static elastic Hooke’s tensors of solid frame of anisotropic open-cell materials, Int. J. Eng. Sci., 147, 103198 (2020) · Zbl 07167834
[27] Maskery, I.; Aremu, A.; Parry, L.; Wildman, R.; Tuck, C.; Ashcroft, I., Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading, Mater. Des., 155, 220-232 (2018)
[28] Meng, K.; Chai, C.; Sun, Y.; Wang, W.; Wang, Q.; Li, Q., Cutting-induced end surface effect on compressive behaviour of aluminium foams, Eur. J. Mech. Solid., 75, 410-418 (2019)
[29] Muller, A.; Binder, M.; Calabró, G.; De Luca, R.; Fanelli, P.; Neu, R.; Schlick, G.; Vivio, F.; You, J., Tailored tungsten lattice structures for plasma-facing components in magnetic confinement fusion devices, Mater. Today, 39, 146-147 (2020)
[30] Nguyen, N. V.; Lee, J.; Nguyen-Xuan, H., Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers, Compos. B Eng., 172, 769-784 (2019)
[31] Plocher, J.; Panesar, A., Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures, Mater. Des., 183, 108164 (2019)
[32] Ptochos, E.; Labeas, G., Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods, J. Sandw. Struct. Mater., 14, 597-626 (2012)
[33] Qi, C.; Sun, Y.; Yang, S., A comparative study on empty and foam-filled hybrid material double-hat beams under lateral impact, Thin-Walled Struct., 129, 327-341 (2018)
[34] Ren, X.; Xiao, L.; Hao, Z., Multi-property cellular material design approach based on the mechanical behaviour analysis of the reinforced lattice structure, Mater. Des., 174, 107785 (2019)
[35] Solyaev, Y.; Lurie, S.; Koshurina, A.; Dobryanskiy, V.; Kachanov, M., On a combined thermal/mechanical performance of a foam-filled sandwich panels, Int. J. Eng. Sci., 134, 66-76 (2019) · Zbl 1423.80021
[36] Vigliotti, A.; Pasini, D., Stiffness and strength of tridimensional periodic lattices, Comput. Methods Appl. Mech. Eng., 229-232, 27-43 (2012)
[37] Vivio, F., A new theoretical approach for structural modelling of riveted and spot welded multi-spot structures, Int. J. Solid Struct., 46, 4006-4024 (2009) · Zbl 1183.74161
[38] Wang, E.; Li, Q.; Sun, G., Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance, Thin-Walled Struct., 147, 106494 (2020)
[39] Yang, C.; Kyriakides, S., Multiaxial crushing of open-cell foams, Int. J. Solid Struct., 159, 239-256 (2019)
[40] Yang, Y.; Shan, M.; Zhao, L.; Qi, D.; Zhang, J., Multiple strut-deformation patterns based analytical elastic modulus of sandwich BCC lattices, Mater. Des., 181, 107916 (2019)
[41] Yang, H.; Li, Y.; Yang, Y.; Chen, D.; Zhu, Y., Effective thermal conductivity of high porosity open-cell metal foams, Int. J. Heat Mass Tran., 147, 118974 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.