×

A new algorithm of proper generalized decomposition for parametric symmetric elliptic problems. (English) Zbl 1447.35145

The work is a really technical one with very abstract formulations. The authors build an iterative deflation algorithm to approximate the solution of a parametric family of elliptic problems, and show its convergence. They explain why this algorithm is a genuine extension of both POD (proper orthogonal decomposition) and PGD (proper generalized decomposition) algorithms. Actually they prove the strong convergence in the parametric elliptic norm of the deflation algorithm for quite general parametric elliptic operators.

MSC:

35J35 Variational methods for higher-order elliptic equations
35Pxx Spectral theory and eigenvalue problems for partial differential equations
47A80 Tensor products of linear operators

References:

[1] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, 2001. · Zbl 0508.58001
[2] A. Ammar, F. Chinesta, and A. Falcó, On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Eng., 17 (2010), pp. 473-486. · Zbl 1269.65120
[3] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J. Non-Newtonian Fluid Mech., 139 (2006), pp. 153–176. · Zbl 1195.76337
[4] B. I. Epureanu, L. S. Tang, and M. Paidoussis, Coherent structures and their influence on the dynamics of aeroelastic panels, Int. J. Non-Linear Mech., 39 (2004), pp. 977–991. · Zbl 1141.74327
[5] G. Berkoz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25 (1993), pp. 539–575.
[6] H. Brézis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Springer-Verlag, 2010. · Zbl 1218.46002
[7] M. Azaïez, F. Ben Belgacem, and T. Chacón Rebollo, Error bounds for POD expansions of parametrized transient temperatures, Comput. Methods Appl. Mech. Engrg., 305 (2016), pp. 501–511. · Zbl 1425.74446
[8] C. Le Bris, T. Lelievre, and Y. Maday, Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations, Constr. Approx., 30 (2009), pp. 621–651. · Zbl 1191.65156
[9] E. Cancès, T. Lelievre, and V. Ehrlacher, Convergence of a greedy algorithm for high-dimensional convex nonlinear problems, Math. Models Methods Appl. Sci., 21 (2011), pp. 2433–2467. · Zbl 1259.65098
[10] L. Cordier and M. Bergmann, Proper Orthogonal Decomposition: An Overview, Lecture Series 2002-04, 2003-03 and 2008-01 on Post-Processing of Experimental and Numerical Data, Von Karman Institute for Fluid Dynamics, 2008.
[11] A. Falcó and A. Nouy, A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach, J. Math. Anal. Appl., 376 (2011), pp. 469–480. · Zbl 1210.65009
[12] A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces, Numer. Math., 121 (2012), pp. 503–530. · Zbl 1264.65095
[13] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991. · Zbl 0722.73080
[14] G. H. Golub and Ch. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, 1996. · Zbl 0865.65009
[15] H. Hotelling, Analysis of a complex of statistical variables into principal components, J. Educational Psychology, 24 (1933), pp. 417–441. · JFM 59.1182.04
[16] P. Holmes, J. L. Lumley, and G. Berkooz, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monogr. Mech., Cambridge University Press, 1996. · Zbl 0890.76001
[17] I. T. Jollife, Principal Component Analysis, Springer, 1986.
[18] M. Kahlbacher and S. Volkwein, Galerkin proper orthogonal decomposition methods for parameter depending elliptic systems, Discuss. Math. Differ. Incl. Control Optim., 27 (2007), pp. 95–117. · Zbl 1156.35020
[19] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90 (2001), pp. 117–148. · Zbl 1005.65112
[20] K. Kunisch and S. Volkwein, Optimal snapshot location for computing POD basis functions, M2AN Math. Model. Numer. Anal., 44 (2010), pp. 509–529. · Zbl 1193.65113
[21] O. Lass and S. Volkwein, Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location, Comput. Optim. Appl., 58 (2014), pp. 645–677. · Zbl 1302.49040
[22] C. Le Bris, T. Lelièvre, and Y. Maday, Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations, Constr. Approx., 30 (2009), pp. 621–651. · Zbl 1191.65156
[23] M. M. Loève, Probability Theory, Van Nostrand, 1988.
[24] Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, International Congress of Mathematicians, Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 1255–1270. · Zbl 1100.65079
[25] J. Margalef-Roig and E. Outerelo Dominguez, Differential Topology, North-Holland, 1992. · Zbl 0760.57001
[26] M. Muller, On the POD Method. An Abstract Investigation with Applications to Reduced-Order Modeling and Suboptimal Control, Ph.D. Thesis, Georg-August Universität, 2008.
[27] A. Nouy, A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 4521–4537. · Zbl 1173.80311
[28] A. Nouy and O. P. Le Ma\^\i tre, Generalized spectral decomposition method for stochastic nonlinear problems, J. Comput. Phys., 228 (2009), pp. 202–235. · Zbl 1157.65009
[29] J. Chen and V. Shapiro, Optimization of continuous heterogeneous models, in Heterogeneous Objects Modelling and Applications, Lecture Notes in Comput. Sci. 4889, A. Pasko, V. Adzhiev, and P. Comninos, eds., Springer-Verlag, 2008, pp. 193–213.
[30] K. Pearson, On lines and planes of closest fit system of points in space, Philos. Mag. (6), 2 (1901), pp. 559–572. · JFM 32.0246.07
[31] A. Quarteroni and G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, MS&A. Model. Simul. Appl. 9, Springer, 2014. · Zbl 1280.65004
[32] W. H. A. Schilders, H. A. van der Vorst, and J. Rommes, eds. Model Order Reduction: Theory, Research Aspects and Applications, Math. Ind. 13, Eur. Consort. Math. Ind. (Berl.), Springer-Verlag, 2008. · Zbl 1143.65004
[33] S. Torquato, Optimal design of heterogeneous materials, Annu. Rev. Mater. Res., 40 (2010), pp. 101–129, .
[34] S. Volkwein, Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling, Lecture Notes, Department of Mathematics and Statistics, University of Konstanz, 2013.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.