×

Parallel solution methods and preconditioners for evolution equations. (English) Zbl 1488.65064

Summary: The recent development of the high performance computer platforms shows a clear trend towards heterogeneity and hierarchy. In order to utilize the computational power, particular attention must be paid to finding new algorithms or adjust existing ones so that they better match the HPC computer architecture.
In this work we consider an alternative to classical time-stepping methods based on use of time-harmonic properties and discuss solution approaches that allow efficient utilization of modern HPC resources.
The method in focus is based on a truncated Fourier expansion of the solution of an evolutionary problem. The analysis is done for linear equations and it is remarked on the possibility to use two- or multilevel mesh methods for nonlinear problems, which can enable further, even higher degree of parallelization.
The arising block matrix system to be solved admits a two-by-two block form with square blocks, for which a very efficient preconditioner exists. It leads to tight eigenvalue bounds for the preconditioned matrix and, hence, to a very fast convergence of a preconditioned Krylov subspace or iterative refinement method. The analytical background is shown as well as some illustrating numerical examples.

MSC:

65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y10 Numerical algorithms for specific classes of architectures

References:

[1] R. Alexander. Diagonally implicit Runge-Kutta methods for stiff ODEs. SIAM Journal on Numerical Analysis, 14(6):1006-1021, 1977. https://doi.org/10.1137/0714068. · Zbl 0374.65038 · doi:10.1137/0714068
[2] V. Alexandrov, O. Esquivel-Flores, S. Ivanovska and A. Karaivanova. On the pre-conditioned quasi-Monte Carlo algorithm for matrix computations. In I. Lirkov, S. D. Margenov and J. Waśniewski(Eds.), International Conference on Large-Scale Scientific Computing, volume 9374, pp. 163-171, Cham, 2015. Springer. https://doi.org/10.1007/978-3-319-26520-9 17. · Zbl 07227062 · doi:10.1007/978-3-319-26520-9_17
[3] O. Axelsson. On mesh independence and Newton type methods. Applications of Mathematics, 38(4):249-265, 1993. · Zbl 0806.65057
[4] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cam-bridge, 1994. https://doi.org/10.1017/CBO9780511624100. · Zbl 0845.65011 · doi:10.1017/CBO9780511624100
[5] O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value Prob-lems: Theory and Computation. Society for Industrial and Applied Mathematics, 2001. https://doi.org/10.1137/1.9780898719253. · Zbl 0981.65130 · doi:10.1137/1.9780898719253
[6] O. Axelsson, S. Farouq and M. Neytcheva. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. Poisson and convection-diffusion control. Numerical Algorithms, 73(3):631-663, 2016. https://doi.org/10.1007/s11075-016-0111-1. · Zbl 1353.65059 · doi:10.1007/s11075-016-0111-1
[7] O. Axelsson, S. Farouq and M. Neytcheva. Comparison of precondi-tioned Krylov subspace iteration methods for PDE-constrained optimiza-tion problems. Stokes control. Numerical Algorithms, 74(1):19-37, 2017. https://doi.org/10.1007/s11075-016-0136-5. · Zbl 1365.65167 · doi:10.1007/s11075-016-0136-5
[8] O. Axelsson, S. Farouq and M. Neytcheva. A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic con-trol. Journal of Computational and Applied Mathematics, 310(C):5-18, 2017. https://doi.org/10.1016/j.cam.2016.05.029. · Zbl 1347.49048 · doi:10.1016/j.cam.2016.05.029
[9] O. Axelsson and W. Layton. A two-level method for the discretization of nonlin-ear boundary value problems. SIAM Journal on Numerical Analysis, 33(6):2359-2374, 1996. https://doi.org/10.1137/S0036142993247104. · Zbl 0866.65077 · doi:10.1137/S0036142993247104
[10] O. Axelsson and D. Lukáš. Preconditioning methods for eddy current optimally controlled time-harmonic electromagnetic problems. Journal of Numerical Math-ematics, 2018. https://doi.org/10.1515/jnma-2017-0064. · Zbl 1428.65040 · doi:10.1515/jnma-2017-0064
[11] O. Axelsson and M. Neytcheva. Algebraic multilevel iteration method for Stielt-jes matrices. Numerical Linear Algebra with Applications, 1(3):213-236, 1994. https://doi.org/10.1002/nla.1680010302. · Zbl 0837.65024 · doi:10.1002/nla.1680010302
[12] O. Axelsson, M. Neytcheva and A. Ström. An efficient preconditioning method for state box-constrained optimal control problems. Technical report, Uppsala University, Department of Information Technology, 2017. Available from Inter-net: http://www.it.uu.se/research/publications/reports/2017-004/.
[13] O. Axelsson and P.S. Vassilevski. Algebraic multilevel precondi-tioning methods. I. Numerische Mathematik, 56(2-3):157-177, 1989. https://doi.org/10.1007/BF01409783. · Zbl 0661.65110 · doi:10.1007/BF01409783
[14] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. BMFEMe, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. Curfman McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang and H. Zhang. PETSc Web page, 2017. Available from Internet: http://www.mcs.anl.gov/ petsc.
[15] T. V. Kolev et al. MFEM: Modular finite element methods. Available from Internet: http://mfem.org/.
[16] M. Heroux, R. Bartlett, V. Howle, R Hoekstra, J. Hu, T. Kolda, R.Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring and A. Williams. An overview of Trilinos. Technical Report SAND2003-2927, Sandia National Laboratories, 2003.
[17] R. Herzog and E.W. Sachs. Preconditioned conjugate gradient method for optimal control problems with control and state constraints. SIAM Journal on Matrix Analysis and Applications, 31(5):2291-2317, 2010. https://doi.org/10.1137/090779127. · Zbl 1209.49038 · doi:10.1137/090779127
[18] M. Hintermüller and M. Hinze. Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter ad-justment. SIAM Journal on Numerical Analysis, 47(3):1666-1683, 2009. https://doi.org/10.1137/080718735. · Zbl 1191.49036 · doi:10.1137/080718735
[19] G. Karypis and V. Kumar. ParMETIS-parallel graph partitioning and fill-reducing matrix ordering, 2013. Available from Internet: http://glaros.dtc. umn.edu/gkhome/metis/parmetis/overview.
[20] T. V. Kolev and P.S. Vassilevski. Parallel auxiliary space AMG solver for H(curl) problems. Journal of Computational Mathematics, 27(5):604-623, 2009. https://doi.org/10.4208/jcm.2009.27.5.013. · Zbl 1212.65128 · doi:10.4208/jcm.2009.27.5.013
[21] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr and W. Zulehner. A robust finite element solver for a multiharmonic parabolic optimal control problem. Computers & Mathematics with Applications, 65(3):469-486, 2013. https://doi.org/10.1016/j.camwa.2012.06.012. · Zbl 1319.49043 · doi:10.1016/j.camwa.2012.06.012
[22] M. Kolmbauer and U. Langer. A robust preconditioned MINRES solver for distributed time-periodic eddy current optimal control prob-lems. SIAM Journal on Scientific Computing., 34(6):B785-B809, 2012. https://doi.org/10.1137/110842533. · Zbl 1258.49059 · doi:10.1137/110842533
[23] U. Langer and M. Wolfmayr. Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem. Journal of Numerical Mathematics, 21(4):265-300, 2013. https://doi.org/10.1515/jnum-2013-0011. · Zbl 1284.65078 · doi:10.1515/jnum-2013-0011
[24] Lawrence Livermore National Laboratory. hypre: High Performance Precondi-tioners. Available from Internet: http://www.llnl.gov/CASC/hypre. · Zbl 1056.65046
[25] J.C. Nèdèlec. Mixed finite elements in R 3 . Numerische Mathematik, 35(3):315-341, 1980. https://doi.org/10.1007/BF01396415. · Zbl 0419.65069 · doi:10.1007/BF01396415
[26] J.C. Nèdèlec. A new family of mixed finite elements in R 3 . Numerische Mathe-matik, 50(1):57-81, 1986. https://doi.org/10.1007/BF01389668. · Zbl 0625.65107 · doi:10.1007/BF01389668
[27] Y. Notay. An aggregation-based algebraic multigrid method. Electronic Trans-actions on Numerical Analysis, 37:123-146, 2010. · Zbl 1206.65133
[28] C.C. Paige and M.A. Saunders. Solution of sparse indefinite systems of lin-ear equations. SIAM Journal on Numerical Analysis, 12(4):617-629, 1975. https://doi.org/10.1137/0712047. · Zbl 0319.65025 · doi:10.1137/0712047
[29] J.W. Pearson, M. Stoll and A.J. Wathen. Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty func-tion. Numerical Linear Algebra with Applications, 21(1):81-97, 2014. https://doi.org/10.1002/nla.1863. · Zbl 1324.49026 · doi:10.1002/nla.1863
[30] A. Redlund and G. Cheng. Implementation and performance studies of a three-phase model solver. Technical report, Uppsala University, Department of Infor-mation Technology, 2013. Available from Internet: http://www.it.uu.se/edu/ course/homepage/projektTDB/ht13/project13/.
[31] Y. Saad. A flexible inner-outer preconditioned GMRES algo-rithm. SIAM Journal on Scientific Computing, 14(2):461-469, 1993. https://doi.org/10.1137/0914028. · Zbl 0780.65022 · doi:10.1137/0914028
[32] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. https://doi.org/10.1137/1.9780898718003. · Zbl 1002.65042 · doi:10.1137/1.9780898718003
[33] P.J. van der Houwen and B.P. Sommeijer. Analysis of parallel diagonally im-plicit iteration of Runge-Kutta methods. Applied Numerical Mathematics, 11(1-3):169-188, 1993. https://doi.org/10.1016/0168-9274(93)90047-U. · Zbl 0787.65054 · doi:10.1016/0168-9274(93)90047-U
[34] P.S. Vassilevski. Multilevel Block Factorization Preconditioners. Springer-Verlag, New York, 2008. · Zbl 1170.65001
[35] R.Čiegis, V. Starikovičius and S. Margenov. On parallel numerical algo-rithms for fractional diffusion problems. In J. Carretero, J. Garsia Blas and S. Margenov(Eds.), Proceedings of the Third International Workshop on Sus-tainable Ultrascale Computing Systems (NESUS 2016). Universidad Carlos III de Madrid, 12 2016.
[36] R.Čiegis, V. Starikovičius, S. Margenov and R.Kriauzienė. Parallel solvers for fractional power diffusion problems. Concurrency and Computation: Practice and Experience, 29(24), 2017. https://doi.org/10.1002/cpe.4216. · doi:10.1002/cpe.4216
[37] J.-C. Xu. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM Journal on Numerical Analysis., 33(5):1759-1777, 1996. https://doi.org/10.1137/S0036142992232949. · Zbl 0860.65119 · doi:10.1137/S0036142992232949
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.